PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of atmospheric nitrogen deposition effects to polish terrestrial ecosystems for various emission scenarios until the target year 2020

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biogeochemical effects to Polish terrestrial ecosystems resulting from atmospheric nitrogen deposition were forecasted until the target year 2020. To this end recently updated critical loads of nutrient nitrogen were applied and the nitrogen deposition projections for the sequence of decades from 1980 until the target year 2020, based on the Current Legislation (CLE) and Maximum Feasible Reductions (MFR) emission scenarios. The predictions were done by use of the Very Simple Dynamic (VSD) Model developed within the Working Group on Effects of the UN ECE Convention on the Long-Range Transboundary Air Pollution CLRTAP. The calculations were done for three main forest ecosystems and three selected semi-natural ecosystems encompassing the whole territory of Poland with the spatial resolution defined by a grid cell of 1*1 km size. The study concluded with maps of CLnut(N) exceedances and expected nitrogen concentrations in soil as chemical criterion, assigned to different eutrophication risk categories for each deposition scenario. The obtained results show that in spite of the realistic (CLE scenario) and extreme (MFR) nitrogen emission reductions until 2020, more than 99% and 80% of total area of terrestrial ecosystems of Poland, respectively, willbe exposed to excessive nitrogen deposition. Results of this study as well as studies done on the European scale reveal that the nitrogen emission reductions determined by the Gothenburg Protocol are still insufficient and may lead to negative ecological effects including loss of ecosystems biodiversity. This substantiates a demanding need for the revision of the CLRTAP Gothenburg Protocol.
Rocznik
Strony
133--143
Opis fizyczny
Bibliogr. 15 poz., tab., rys.
Twórcy
autor
  • Institute of Environmental Protection, National Centre for Emission Management (KOBiZE), Section of Mathematical Modelling, ul. Grunwaldzka 7B/2, Siemianowice Śl., Poland
autor
  • Institute of Environmental Protection, National Centre for Emission Management (KOBiZE), Section of Mathematical Modelling, ul. Grunwaldzka 7B/2, Siemianowice Śl., Poland
Bibliografia
  • [1] Review of the 1999 Gothenburg Protocol, Review Report of the Working Group on Effects, ECE/EB.AIR/WG.1/2007/14, 2007.
  • [2] Integration of outcome-oriented targets into the programmes of work of the Convention, taking into account the 2010 biodiversity target, the Global Strategy for Plant Conservation, and relevant targets set by the World Summit on Sustainable Development, Conference of The Parties to the Convention on Biological Diversity, UNEP/CBD/COP/7/20/Add.3, 2003.
  • [3] Halting the loss of biodiversity by 2010: proposal for a first set of indicators to monitor progress in Europe, EEA Technical Report No. 11, 2007.
  • [4] PALUCH R., Zmiany zbiorowisk roślinnych i typów siedlisk w drzewostanach naturalnych Białowieskiego Parku Narodowego, Sylwan, 2001, 10, 73–82.
  • [5] UBA, Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks and Trends, Umweltbundesamt, Berlin, Germany, 2004.
  • [6] MILL W., SCHLAMA A., KACPRZYK W., Raport w sprawie aktualizacji map ładunków krytycznych zakwaszenia i eutrofizacji dla ekosystemów leśnych Polski, [in:] Realizacja zadań wynikających z ratyfikowanych bądź podpisanych przez Rzeczpospolitą Polską wielostronnych umów międzynarodowych oraz członkostwa w agendach i instytucjach powołanych przez Organizację Narodów Zjednoczonych w zakresie ochrony środowiska, Report for year 2005, IOŚ, Warsaw, 2005.
  • [7] DAVIES C.E., MOSS D., HILL M.O., EUNIS Habitat Classification Revised 2004, European Environment Agency, European Topic Centre On Nature Protection And Biodiversity, October 2004, 2004.
  • [8] Soil Geographical Data Base for Europe – Poland (EUROSOIL), S. Białousz (Ed.), The Teledetection Laboratory, Warsaw University of Technology, 2008.
  • [9] Modelling and Mapping of Critical Thresholds in Europe, M. Posch, P.A.M. Smet,J.-P. Hettelingh, R.J. Downing (Eds.), CCE Status Report 2001, Coordination Centre for Effects, Netherlands Environmental Agency, 2008.
  • [10] NEW M., LISTER D., HULME M., MAKIN I., A high-resolution data set of surface climate over global land areas, Climate Research, 2002, 21, 1–25.
  • [11] POSCH M., REINDS GJ., VSD – User Manual of the Very Simple Dynamic soil acidification model, Coordination Centre for Effects, RIVM, Bilthoven, The Netherlands, 2005.
  • [12] POSCH M., REINDS G.J., A very simple dynamic soil acidification model for scenario analyses and target load calculations, Environmental Modelling and Software, 2009, 24 (3), 329–340.
  • [13] AMANN M., BERTOK I., CABALA R., COFALA J., HEYES C., GYARFAS F., KLIMONT Z., SCHÖPP W.,WAGNER F., A final set of scenarios for the Clean Air For Europe (CAFE) programme, Final Report, CAFE Scenario Analysis, Report 6, International Institute for Applied Systems Analysis (IIASA), 2005.
  • [14] Critical loads of nitrogen and dynamic modelling, CCE Progress Report 2007, J. Slootweg, M. Posch, J.-P. Hettelingh (Eds.), Coordination Centre for Effects, Netherlands Environmental Agency, 2007.
  • [15] Critical load, dynamic modelling and impact assessment in Europe, CCE Status Report 2008, J.-P. Hettelingh, M. Posch, J. Slootweg (Eds.), Coordination Centre for Effects, Netherlands Environmental Agency, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62219acb-e2ef-43a5-ab3d-63f3d350e5a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.