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UNIFORM HORIZONTAL PROJECTILE
MOTION

42.1 INTRODUCTION

This contribution complements our preceding papers devoted to the theoretical prob-
lem of the uniform motions in the homogeneous and central gravitational fields [7,8]. The
mathematical framework of the problem is presented in more details e.g. in [1–6].

From the mechanics it is known that motions of the particles are classified with
respect to two aspects. The first aspect is the shape of the trajectory, we distinguish be-
tween rectilinear motions and curvilinear motions. The second aspect of the classification
is the speed, we distinguish between uniform and non uniform motions. In the case of
uniform motions the magnitude of the instantaneous velocity v remains constant during
the entire motion, |v| = v0 = const. In the case of non uniform motions the magnitude of
the instantaneous velocity is changing during the motion, |v| = v(t).

It is evident that the classical horizontal projectile motion is neither rectilinear nor
uniform. To make the classical horizontal projectile motion uniform we consider this
motion as a constrained mechanical system subjected to a certain subsidiary condition -
constraint, which ensures desired character of the motion.

In this article we study the modification of the classical horizontal projectile motion
onto the uniform one. The problem is solved as the initial value problem for the reduced
motion equation of the constrained mechanical system arisen from the mechanical system
of one particle in the homogeneous gravitational field subjected to one nonholonomic
constraint nonlinear in the components of the velocity,

|v| =
√
v2
x + v2

y =
√
ẋ2 + ẏ2 = v0, (42.1)

which represents the requirement of the uniformity of the motion. This constraint is called
isotachytonic constraint.

In the paper we present the comparison of both horizontal projectile motions (clas-
sical and uniform) under the same initial conditions, both particles starts from the initial
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height h0 with the initial velocity v0 = (v0, 0). The air resistance is neglected. The pre-
sented problem can serve as a suitable topic for an seminar of theoretical mechanics on
the university level.

42.2 CLASSICAL HORIZONTAL PROJECTILE MOTION

We consider a particlem moving in the homogeneous gravitational field (g = (0,−g)
gravitational acceleration). The particle starts from the point [0, h0] with the initial
velocity v0 = (v0, 0), i.e. it is oriented in the horizontal direction. The Lagrangian of the
considered mechanical system is

L = 1
2m(ẋ2 + ẏ2)−mgy. (42.2)

The Newtonian motion equations respective the Euler-Lagrange equations of the La-
grangian (42.2) have the simple form

mẍ = 0, mÿ = −mg. (42.3)

With respect to the initial conditions x(0) = 0, y(0) = h0, ẋ(0) = v0, and ẏ(0) = 0
we get the particular solution of (42.3)

x(t) = v0t, y(t) = h0 − 1
2gt

2, (42.4)

which represents the parametric expression of the classical horizontal projectile motion.
By the elimination of the time parameter t, t = x/v0, we obtain

y = h0 − g
2v2

0
x2, (42.5)

which represents the equation of a parabola. However, the trajectory is realized only
along the piece of the parabola (42.5) from the starting point [0, h0] to the impact point
[R, 0], where R denotes the distance of the impact from the origin (range).

The time dependence of the Cartesian components vx = vxi, vy = vyj of the velocity
v is given by

vx(t) = ẋ(t) = v0, vy(t) = ẏ(t) = −gt, (42.6)

where i, j are the unit vectors in the direction of x-axis and y-axis, respectively. Hence,
the time dependence of the magnitude of the instantaneous velocity is expressed by

v(t) =
√
v2
x(t) + v2

y(t) =
√
v2

0 + g2t2. (42.7)

Cartesian components ax = axi, ay = ayj of the acceleration a are

ax(t) = ẍ(t) = d
dtvx(t) = 0, ay(t) = ÿ(t) = d

dtvy(t) = −g. (42.8)
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Hence, the magnitude of the instantaneous acceleration is

a(t) =
√
a2
x(t) + a2

y(t) = g. (42.9)

The other possible decomposition of the acceleration vector a is on the tangent at
and normal an components. The tangent component is given by

at = atev, at = dv
dt = g2t√

v2
0 + g2t2

, (42.10)

where ev is the unit vector in the direction of the instantaneous velocity v. The normal
component of the acceleration is

an = a− at, an =
√
a2 − a2

t = v0g√
v2

0 + g2t2
. (42.11)

On the other hand, for the magnitude of the normal component an holds

an(t) = v2(t)
r(t) = v2(t)κ(t), (42.12)

where r(t) is the radius of the curvature of the trajectory at the time t and κ(t) = 1/r(t)
is the curvature of the trajectory at the time t. If we compare the formulas (42.11) and
(42.12) we obtain the expression of the curvature κ(t) of the trajectory of the classical
horizontal projectile motion,

κ(t) = v0g√
(v2

0 + g2t2)3
. (42.13)

The same result can be calculated using the classical geometric formula for the curvature
κ of a plain curve under arbitrary parametrisation

κ(t) = |ẋÿ − ẍẏ|√
(ẋ2 + ẏ2)3

(42.14)

after substituting and applying (42.6), (42.7) and (42.8).
The kinematic parameters of the classical horizontal projectile motion are:

• total time T =
√

2h0
g
,

• range R = v0

√
2h0
g
,

• impact speed vR =
√
v2

0 + 2gh0,

• angle of impact cosα = |vR · i|
|vR||i|

= v0√
v2

0 + 2gh0
,

where vR = v(T ) = (v0,−
√

2gh0) is the impact velocity vector, |vR| = vR, i = (1, 0)
is the unit vector in the direction of x-axis,
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• curvature of the trajectory κ(t) = v0g√
(v2

0 + g2t2)3
.

Finally we computed the length of the trajectory of the classical horizontal projectile
motion

s =
∫ T

0
v(t)dt =

∫ T

0

√
v2

0 + g2t2dt. (42.15)

The integration and the evaluation in the limits from 0 to T leads us to the result

s =
√

h0
2g

√
v2

0 + 2gh0 + v2
0

2g ln
(√

2gh0 +
√
v2

0 + 2gh0

v0

)
. (42.16)

42.3 THE DYNAMICS OF THE PARTICLE IN THE PLANE SUBJECT TO ONE NON-
HOLONOMIC CONSTRAINT

Consider a mechanical system of one particle in the configuration space R2 (plane)
characterized by the Lagrangian L = T − V , where T is the kinetic energy of the particle
and V is its potential energy. Denote by q1, q2, certain generalized coordinates in the
configuration space. The motion of the particle is then governed by the Newtonian motion
equations

q̈1 = −∂V
∂q1 , q̈2 = −∂V

∂q2 , (42.17)

which arise as the Euler-Lagrange equations

∂L

∂q1 −
d
dt

(
∂L

∂q̇1

)
= 0, ∂L

∂q2 −
d
dt

(
∂L

∂q̇2

)
= 0, (42.18)

of the Lagrangian L.
In the case when the motion of the particle is restricted by one nonholonomic con-

straint depending on time t, generalized coordinates q1, q2, and generalized components
q̇1, q̇2, of the velocity v,

f(t, q1, q2, q̇1, q̇2) = 0, (42.19)

which represents certain geometric surface (manifold) in the corresponding evolution space
R × R2 × R2, the dynamics of the motion is explained by the presence of a additional
constraint force

Φ = µ

(
∂f

∂q̇1 ,
∂f

∂q̇2

)
, (42.20)

called Chetaev constraint force, where µ is the Lagrange multiplier. Such expression of the
constraint force was treated as suitable and it was attested in many practical applications
of the nonholonomic systems.

The motion of the constrained particle is then governed by the nonholonomic Euler-
Lagrange equations

∂L

∂q1 −
d
dt

(
∂L

∂q̇1

)
= µ

∂f

∂q̇1 ,
∂L

∂q2 −
d
dt

(
∂L

∂q̇2

)
= µ

∂f

∂q̇2 . (42.21)
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In nonholonomic terminology the equations (42.21) are called Chetaev equations of motion
or deformed motion equations since they arise by the deformation of the unconstrained
Euler-Lagrange equations (42.18) of the original unconstrained mechanical systems by
means of the Chetaev constraint force (42.20). The correctness of the deformed equations
was verified from the nonholonomic variational principle [5].

42.4 UNIFORM HORIZONTAL PROJECTILE MOTION

While in the case of the classical horizontal projectile motion the magnitude of
the instantaneous velocity changes due to (42.7), in the case of the uniform horizontal
projectile motion we request uniformity of the magnitude of the instantaneous velocity of
the particle, i.e.

v(t) =
√
ẋ2(t) + ẏ2(t) = v0 = const., (42.22)

where v0 is the magnitude of the initial velocity v. The equation (42.22) represents one
nonholonomic constraint which can be rewrite as follows

f ≡ ẋ2(t) + ẏ2(t)− v2
0 = 0. (42.23)

This constraint is called isotachytonic constraint, and it is evident that it is nonholonomic
constraint nonlinear in the components of the velocity v.

Without loss of generality we assume that the motion takes place in the half plane,
where ẋ > 0. Therefore the equation (42.23) can be rewrite into explicit form

ẋ =
√
v2

0 − ẏ2. (42.24)

The Chetaev constraint force Φ (42.20) arising in the context of the constraint
(42.23) is the vector

Φ = (Φx,Φy) = µ

(
∂f

∂ẋ
,
∂f

∂ẏ

)
= µ(2ẋ, 2ẏ), (42.25)

where µ is the Lagrange multiplier.
Deformed equations of motion (42.21) applied on our problem give us

mẍ = 2µẋ, mÿ = 2µẏ −mg, (42.26)

which together with the differential equation of the constraint (42.24) govern the uniform
horizontal projectile motion.

By the elimination of the Lagrange multiplier µ we get

µ = − mẏÿ

2(v2
0 − ẏ2) . (42.27)
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After the substitution of (42.27) to the second equation of the system (42.26) and after
routine manipulations we obtain one motion equation called reduced equation of motion
for the uniform horizontal projectile motion

ÿ = − g
v2

0
(v2

0 − ẏ2), (42.28)

which together with the constraint equation (42.24) and with respect to the initial con-
ditions x(0) = 0, y(0) = h0, ẋ(0) = v0 and ẏ(0) = 0, enables us to find the parametric
equations of the considered motion. For technical details concerning solving of the differ-
ential equation (42.28) we refer to [7]. As the original result we present the parametric
equations of the uniform horizontal projectile motion,

x(t) = −πv2
0

2g + 2v2
0
g

arctan e
g

v0
t
, y(t) = h0 − v2

0
g

ln cosh( g
v0
t). (42.29)

The time dependence of the Cartesian components vx, vy of the instantaneous
velocity v is given by

vx(t) = ẋ(t) = v0

cosh( g
v0
t) , vy(t) = ẏ(t) = −v0 tanh( g

v0
t). (42.30)

In fact, the reader could verify that the magnitude of the instantaneous velocity remains
constant,

v(t) =
√
ẋ2(t) + ẏ2(t) = v0 = const. (42.31)

The Cartesian components ax, ay of the acceleration a are

ax(t) = ẍ(t) = −g
tanh( g

v0
t)

cosh( g
v0
t) , ay(t) = ÿ(t) = −g

cosh2( g
v0
t)
. (42.32)

Hence, the magnitude of the instantaneous acceleration is

a(t) =
√
a2
x(t) + a2

y(t) = g

cosh( g
v0
t) . (42.33)

However, the tangent component at = atev of the acceleration is zero, at = dv/
dt = 0, since v(t) = v0. Therefore for the normal component an of the acceleration we
obtain

an = a− at, an =
√
a2 − a2

t = a = g

cosh( g
v0
t) . (42.34)

On the other hand, for the magnitude of the normal component an holds

an(t) = v2(t)
r(t) = v2(t)κ(t), (42.35)

where r(t) is the radius of the curvature of the trajectory at the time t and κ(t) = 1/r(t)
is the curvature of the trajectory at the time t. If we compare the formulas (42.34) and
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(42.35) we obtain the expression of the curvature κ(t) of the trajectory of the uniform
horizontal projectile motion,

κ(t) = g

v2
0 cosh( g

v0
t) . (42.36)

The same result can be calculated using the classical geometric formula for the curvature
(42.14) after applying the formulas (42.30) and (42.32).

The explicit expression of the trajectory (after the elimination of the time parameter
t from the first equation of (42.29)) is

y(x) = h0 + v2
0
g

ln
∣∣∣cos

(
g
v2

0
x
)∣∣∣ . (42.37)

The trajectory of the uniform horizontal projectile motion is realized only along bold part
of the positive first period of the function (42.37), see Fig. 42.1.

x

y

−50 −40 −30 −20 −10 10 20 30 40

3

0

Fig. 42.1 Explicit expression of the trajectory
Source: own elaboration

The kinematic parameters of the uniform horizontal projectile motion are:

• total time T = v0
g

arccosh e
gh0
v2

0

• range R = v2
0
g

arccos e
− gh0

v2
0 = v2

0
g
α, where α is the angle of the impact

• impact speed vR = v0 = const.,

• angle of impact cosα = |vR · i|
|vR||i|

= e
− gh0

v2
0 = R g

v2
0
,

where vR = v(T ) =
(
v0 e

− gh0
v2

0 ,−v0 e
− gh0

v2
0

√
e

2gh0
v2

0 −1
)

is the impact velocity vector,

|vR| = vR = v0, i = (1, 0) is the unit vector in the direction of x-axis,

• curvature of the trajectory κ(t) = g

v2
0 cosh( g

v0
t) .

Finally, we compute the length of the trajectory of the uniform horizontal projectile
motion,

s =
∫ T

0
v(t)dt = v0

∫ T

0
dt = v0T = v2

0
g

arccosh e
gh0
v2

0 . (42.38)
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42.5 COMPARISON OF CLASSICAL AND UNIFORM HORIZONTAL PROJECTILE
MOTION

We compare kinematic parameters of the both motions, the horizontal projectile
motion on the one side and the uniform horizontal projectile motion on the other side
with respect to the same initial conditions; x(0) = 0, y(0) = h0 with the initial velocity
v0 = (v0, 0) for the following numerical values v0 = 10 m ·s−1, g = 10 m ·s−2 and h0 = 5 m,
cf. Tab. 42.1.

Tab. 42.1 Kinematic parameters - comparison

Horizontal projectile motion Uniform horizontal projectile motion

R = v0

√
2h0
g

= 10m R = v2
0
g

arccos e
− gh0

v2
0
.= 9.19m

T = R
v0

=
√

2h0
g

= 1 s T = v0
g

arccosh e
gh0
v2

0
.= 1.09 s

vR =
√
v2

0 + 2gh0
.= 14.14m·s−1 vR = v0 = 10m·s−1

α = arccos v0√
v2

0+2gh0
= 45◦ α = arccos e−

gh0
v2

0
.= 52◦ 39′ 36′′

s
(42.16).= 11.48m s = v2

0
g

arccosh e
gh0
v2

0
.= 10.85m

Source: own elaboration

On the following picture, Fig. 42.2, one can see the direct comparison of trajectories
of both motions under the same initial conditions.

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

R

Uniform hor. proj. m.

Class. hor. proj. m.

Fig. 42.2 Trajectories of both motions
Source: own elaboration

42.6 DYNAMICS OF UNIFORM HORIZONTAL PROJECTILE MOTION

The classical horizontal projectile motion is caused by the influence of the grav-
itational force F g = (0,−mg), which has the constant magnitude Fg = mg and the
permanent direction still oriented vertically downward. Since the particle starts with
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the initial velocity vector oriented in the horizontal direction, its movement consists of
the uniform rectilinear motions in the x-axis and simultaneously of the free fall oriented
vertically downward and it ends by the impact of the particle on the horizontal plane.

In the case of the uniform horizontal projectile motion it acts on the particle beyond
the gravitational force F g also the Chetaev constraint force Φ, which ensures the require-
ment of the constant magnitude of the velocity of the particle. Recall that the Chetaev
constraint force is expressed by the relation (42.25)

Φ = µ(t)(2ẋ, 2ẏ) = 2µ(t)v(t) = 2µ(t)v0ev(t), (42.39)

where v(t) is the instantaneous velocity vector, ev(t) is the unit vector in the direction
v(t). It is evident that during the motion the Chetaev force must change the magnitude
|Φ| = 2v0|µ(t)| and also its direction ev(t), which is determined by the direction of v(t).
Time dependence of the Lagrange multiplier µ(t) is

µ(t) = − mẏÿ

2(v2
0 − ẏ2)

(42.28)= mg

2v2
0
ẏ

(42.30)= −mg2v0
tanh

(
g
v0
t
)
. (42.40)

Time dependence of the Chetaev force Φ(t) is then

Φ(t) = 2µ(t)v0ev(t) = φ(t)ev(t) = −mg tanh
(
g
v0
t
)
. (42.41)

We conclude that the influence of the Chetaev constraint force can be alternatively
substituted by certain external force F e acting in the vector line of v(t) and its magnitude
is regulated by the relation

|F e| = |Φ(t)| = |φ(t)| = mg tanh
(
g
v0
t
)
. (42.42)

Stress that the scalar function φ(t) < 0, i.e. it has opposite direction than v(t) and it
compensates the classical accelerated motion of the particle.

The Chetaev force Φ plays the significant role in the energetic balance of the uniform
horizontal projectile motion. Indeed, mechanical work WΦ of the Chetaev force Φ along
the trajectory γ of the uniform horizontal projectile motion balances the changes of the
potential energy instead of the kinetic energy which remains constant during the motion.
Details can be found in [7].

CONCLUSION

The modification of the classical horizontal projectile motion onto uniform one brings
changes in the kinematics, dynamics and also in the energetic balance of the considered
motion. From the point of view of kinematics, the trajectory is not a part of parabola,
but it is a small piece of the graph of a certain periodic transcendent function (42.37),
Fig. 42.1. There are changes in the kinematic parameters against the classical horizontal
projectile motion under the same initial conditions h0, v0. The range R of the uniform
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horizontal motion is at the shorter distance, the length s of the trajectory is shortened
and the total time T of the motion becomes slightly longer.

Dynamics of the modified horizontal projectile motion is explained by the presence
of the Chetaev constraint force Φ which ensures the uniformity of the motion. It has
shown that the constraint force must change its magnitude (42.42) during the motion and
also its direction ev(t).
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UNIFORM HORIZONTAL PROJECTILE MOTION

Abstract: In the paper we present the modification of the classical horizontal projectile motion
in the homogeneous gravitational field called uniform horizontal projectile motion. The particle
passing in the homogeneous gravitational field is treated as a mechanical system subjected to a
nonholonomic nonlinear constraint which keeps the magnitude of the instantaneous velocity of
the particle constant during the motion. We present the comparison of the kinematic parame-
ters of both motions (classical and uniform horizontal projectile motions) under the same initial
conditions. The presented problem can serve as a suitable topic for an elementary course of
theoretical mechanics on the university level.

Keywords: nonholonomic mechanical systems, reduced and deformed equations of motion,
Chetaev constraint force, horizontal projectile motion, kinematic parameters.

ROVNOMĚRNÝ VODOROVNÝ VRH

Abstrakt: V článku prezentujeme modifikaci klasického vodorovného vrhu v homogenním grav-
itačním poli na rovnoměrný vodorovný vrh. Částice pohybující se v homogenním gravitačním
poli je chápána jako mechanický systém podrobený neholonomní nelineární vazbě, která udržuje
konstantní velikost okamžité rychlosti částice během pohybu. Prezentujeme srovnání kinematick-
ých parametrů obou pohybů (klasického i rovnoměrného vodorovného vrhu) vzhledem ke stejným
počátečním podmínkám. Prezentovaný problém může sloužit jako vhodné téma k elementárnímu
kurzu teoretické mechaniky na vysokoškolské úrovni.

Klíčová slova: neholonomní mechanický systém, redukované a deformované pohybové rovnice,
Chetaeova vazebná síla, vodorovný vrh, kinematické parametry.
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