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ApplicAtion of the pAris formulA with m=2 And the vAriAble loAd 
spectrum to A simplified method for evAluAtion of reliAbility 

And fAtigue life demonstrAted by AircrAft components

uproszczonA metodAszAcowAniA niezAwodności i trwAłości zmę-
czeniowej elementów konstrukcji stAtku powietrznego  

z wykorzystAniem wzoru pArisA dlA m=2 i zmiennego widmA obciążeniA*
The presented paper is the follow-up to the study, where the method for assessment of the fatigue life of a structural component 
was outlined with consideration of the variable spectrum of loads and with use of the Paris formula for m ≠ 2. Due to the different 
nature inherent to analytic forms of solutions for the Paris equations with their exponential parameter m = 2, that special case is 
the subject of a separate analysis. This paper also uses the transformation of a real spectrum with variable values of fatigue cycles 
into a homogenous spectrum with weighted cycles. The method was developed that uses the transformed spectrum to evaluate 
fatigue life for a selected component of the aircraft structure when the component suffers from an initial crack. The method for 
modeling of the crack length expansion uses a differential equation that is then subjected to transformations to obtain a partial dif-
ferential equation of the Fokker-Planck type, which has a particular solution, explicitly the length density function for the crack of 
the component in question. That length density function served subsequently to determine reliability and fatigue life of a structural 
component where the crack length expanded from the permissible value ld to the critical threshold lkr..

Keywords: fatigue of structures, reliability, fatigue life, random spectrum of loads.

Prezentowany artykuł jest uzupełnieniem pracy, w której przedstawiono metodę oceny trwałości zmęczeniowej elementu konstruk-
cji dla zmiennego widma obciążenia z wykorzystaniem wzoru Parisa dla m≠2. Ze względu na odmienność postaci analitycznych 
rozwiązań dla wykładnika równania Parisa m=2, ten szczególny przypadek rozwiązań został przedstawiony w niniejszym opra-
cowaniu. Pokazany został sposób przekształcenia widma rzeczywistego o zmiennych wartościach cykli w widmo jednorodne o 
cyklach ważonych. Wykorzystując widmo przekształcone opracowano metodę oceny trwałości zmęczeniowej wybranego elementu 
konstrukcji statku powietrznego z początkowym pęknięciem. Do modelowania przyrostu długości pęknięcia wykorzystano równa-
nie różnicowe, z którego po przekształceniu otrzymano równanie różniczkowe cząstkowe typu Fokkera-Plancka. Rozwiązaniem 
szczególnym tego równania jest funkcja gęstości długości pęknięcia elementu. Wykorzystując następnie funkcję gęstości długości 
pęknięcia określono niezawodność i trwałość zmęczeniową elementu konstrukcji dla pęknięcia narastającego do wartości dopusz-
czalnej ld mniejszej od wartości krytycznej lkr.. 

Słowa kluczowe: zmęczenie konstrukcji, niezawodność, trwałość zmęczeniowa, losowe widmo obciążenia.
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1. Introduction

Assessment of the fatigue life for components that are ‘operated’ 
under variable load spectrum is really troublesome to formulate ana-
lytical relationships. Thus, it is a main subject ofworld-wide scientific 
research [1–6, 16, 18]. However, the assessment of the fatigue life 
for components that are ‘operated’ under variable load spectrum is 

crucial to manage flight safety forcivilian and military aircraft. There-
fore, there is a necessity to find simplified methods, that could be 
practically applied in aviation transport [7, 9, 13–15, 18]. In this paper 
the simplified method is used that has already been disclosed in [17]. 
The applied simplification consists in transformation of the variable 
spectrum of loads to a homogenous one with weighted cycles. 
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This paper is the follow-up to the previous study [17] where the 
simplified method for assessment of the fatigue life of an aircraft 
structural component was outlined with consideration for the variable 
spectrum of loads and with use of the Paris formula for m ≠ 2. The 
forms of analytic solutions for this problem differ from each other de-
pending on the exponent parameter for the Paris formula, i.e. whether 
m ≠ 2or m = 2. It is why this study is dedicated to the case when the 
exponent in the Paris formula m = 2.

It is assumed that the length of the initial crack within a structural 
component is l0 and then the crack expands due to the effect of a load 
with a variable spectrum up to the length of  that is still permissible 
and safe as being less than the critical length of lkr. It is also assumed 
that the expansion rate of the crack is subject to a deterministic rule 
defined by the Paris equation [8]:

 dl
dN

C K m= ( )∆ , (1)

where:
 ΔK – variation range for the coefficient of stress intensity 

factor,
 C, m – material-dependent constants,
 N – the variable the represents the number of load cycles 

of a structural component.
For the case in question, i.e. when m = 2, the formula(1) adopts 

the following form:

 dl
dN

C K= ( )∆ 2 . (2)

2. Determination of the crack expansion rate for m = 2 
and for transformed spectrum of loads applied to a 
structural component

Transformation of a real load spectrum with variable load values 
into a homogenous spectrum with weighted cycles is based on the 
following assumptions:

Each component of an aircraft is operated under variable loads 1) 
during the aircraft missions;
The spectrum of loads affecting the aircraft component during 2) 
a standard mission is available. The load is a multiplication of 
a standard cycle;
It is assumed that the available standard load makes it possible 3) 
to calculate:

the total number of load cycles during a single flight, –
the spectrum comprises  – L thresholds with the maximum val-

ues of stresses σ σ σ1 2
max max max, , ,… L ;

For the analyzed spectrum the repetition numbers of the maxi-4) 
mum stress threshold is the following:   
σ1

max occurs n1 times, σ2
max occurs times, …, σL

max occurs nL 
times; Therefore, for the entire flight the repetition numbers of 
the predefines stress threshold amounts to N nc ii

L= =∑ 1 ;

The minimum values for the predefined stress thresholds is 5) 
calculated with the use of the following formula:  
 

 σ
σ σ σ

i sr
i i i n

i

i

n,
min ,

min
,
min

,
min



=
+ +…+1 2 , where i = 1,2,...,L;

The values of maximum 6) σi
max and minimum σi,śr

min stress values 
for operation cycles with frequencies Pi of their occurrences 
are summarized in Table 1;

The asymmetry coefficients for operation cycles are summa-7) 
rized in Table 2.  

where:  

 R̂i
i sr

i
=
σ

σ
,
min

max
 , U R Ri i i=∝ + ∝ + ∝1 2 3

2ˆ ˆ , ∝ ∝ ∝1 2 3, ,  – em- 

 pirical coefficients [11, 12].
Ranges for stress variations are calculated by the formula: 8) 
 
   ∆σ σ σi i i sr= −max

,
min


 

and summarized in Table 3.

Considering the effect exercised by overload cycles onto ex-9) 
pansion of cracks (Table 4)  
 
  ∆ ∆σ σi ef i

P
iC, =   

where:
 Ci

P– coefficients that represents retardation of the   
crack expansion after occurrence of overload cycles [10].

For the foregoing assumptions the relationship (1) with regard to 
the rate of crack development assumes the following form:

Table 1. Maximum σi
max and minimum σi,śr

min stress values for operation cycles 
with frequencies Pi of their occurrences

σi
max σ1

max σ2
max … σi

max … σL
max

σi,śr
min σ1,śr

min σ2,śr
min … σi,śr

min … σL,śr
min

Pi
1

1
c

nP
N

= 2
2

c

nP
N

= …
i

i
c

nP
N

= …
L

L
c

nP
N

=

Table 2. Asymmetry coefficients R̂ i for operation cycles with Ui factors that 
take into account the impact of these coefficients on the cracking 
rates

ith cycle 1 2 … i … L

R̂ i R̂ 1 R̂ 2 … R̂ i R̂ L

Ui U1 U1 … Ui … UL 

Table 4. Variation ranges ∆σi,ef for effective stress with consideration of over-
load cycles

cycle types 1 2 … i … L

coefficients C1
P C2

P … Ci
P CL

P

∆σi,ef ∆σ1,ef ∆σ2,ef … ∆σi,ef … ∆σL,ef 

Table 3. Ranges for stress variations ∆σi with frequencies Pi of their concur-
rencies

cycle types 1 2 … i … L

∆σi ∆σ1 ∆σ2 … ∆σi ∆σL

Pi P1 P2 … Pi … PL
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 dl
dN

C PU M l
m

ii
L

i i ef
m

k
m

m

= ( )





=∑π σ2

1
2∆ , , (3)

where:
 Mk – the parameter that indicates the location of the crack  

within the structural component and its dimensions with 
respect to dimensions of the overall component [8].

Having considered all the possible load cycles the relationship (3) 
adopts the form:

 
dl
dN

C M PU lk i ii
L

i ef= ( )





=∑π σ2

1
2

∆ , , (4)

Where: i = 1,2,…,L
The relationship (4) can be expressed as a function of time or, more 
precisely, the function of an aircraft flying time. For this purpose it is 
assumed that:

 N = λt, (5)
where: 
 λ – intensity (frequency) of occurrence of load cycles in a 

structural component;
 N – number of load cycles;
 t – overall flying time of an aircraft.

For the case in question λ = 1/Δt, where Δt stands for duration of 
the fatigue cycle for the specific component. The easiest way to deter-
mine the Δt parameter is the use the following equation:

 ∆t T
Nc

= , (6)

where:
 T – average duration of a standard flight of an aircraft and 

assumed for determination of a load cycle,
 Nc – number of load cycles within a standard load 

spectrum.
After the foregoing substitutions and transformations the formula 

(4) adopts the following form:

 
dl
dt

C M PU lk i ii
L

i ef= ( )





=∑λ π σ2

1
2

∆ , . (7)

The formula (7) makes it possible to calculate the rate of crack 
expansions for the homogenous spectrum with weighted cycles of a 
single type.

3. Determination of the density function for a crack 
length as a function of time (flying time)

Let Ul,t stand for the probability that the crack length of a compo-
nent is l for the overall flying time t of an aircraft. The difference equa-
tion for the foregoing assumptions adopts the following form [7, 18]:

 U t U tUl t t l t l l t, , ,+ −= −( ) +∆ ∆∆ ∆1 λ λ , (8)

where:
 Δl – expansion of the crack length during a single equivalent 

cycle.
The value of the crack length expansion, calculated on the basis of 

the equation (7) amounts to:

 ∆ ∆ ∆l C M PU l tk i ii
L

i ef= ( )





=∑λ π σ2

1
2

, . (9)

The equation (8) can be rewritten in the functional form:

 U l t t t U l t tU l l t, , ,+( ) = −( ) ( ) + −( )∆ ∆ ∆ ∆1 λ λ . (10)

where:
 U(l, t) – the density function for the crack length after 

expiring of the t total flying time expressed in flying hours;
 (1−λΔt) – probability that no equivalent load cycle occurs 

during the time interval with the length of Δt;
 λΔt – probability that an equivalent load cycle occurs during 

the time interval with the length of Δt.
The equation (10) can be converted into a partial differential equa-

tion. For that purpose the following approximations are made:

 









U l t t U l t
U l t

t
t, ,

,
+( ) ≅ ( ) + ∂ ( )

∂
∆ ∆

U l l t U l t
U l t

l
l

U l t
l

l−( ) ≅ ( ) − ∂ ( )
∂

+
∂ ( )

∂
∆ ∆ ∆, ,

, ,
( )1

2

2

2
2

.    (11)

After substitution of (11) for (10) the following formula is obtained:

 
∂ ( )

∂
= −

∂ ( )
∂

+
∂ ( )

∂

U l t
t

U l t
l

l l
U l t

l
, ,

( )
,

λ λ∆ ∆
1
2

2
2

2  (12)

where:

∆ ∆ ∆l C PU M l ti ii
L

i ef k= ( )





=∑λ π σ1

2 2
, .

Since, λΔt = 1, then:

 ∆ ∆l C PU M li ii
L

i ef k= ( )





=∑π σ1

2 2
, . (13)

Let:
 C M Ckπ 2

2= , (14)

 ∆ ∆l C PU li ii
L

i ef= ( )





=∑2 1

2
σ , . (15)

Substitution of (15) for (12) leads to the following equation:

∂ ( )
∂

= −
∂ ( )

∂
( )






 +=∑

U l t
t

U l t
l

C PU l C PUi ii
L

i ef i
, ,

(,λ σ λ2 1
2

2
1
2

∆ iii
L

i ef l
U l t

l=∑ ( )







∂ ( )
∂1

2 2
2

2∆σ , )
,

. 

(16)

The solution of the equation (7) should be substituted  for the 
crack length in the equation (16):

 
dl
dt

C PU li ii
L

i ef= ( )





=∑λ σ2 1

2
∆ , ,

 
dx
x

C PU dtl
l t

i ii
L

i ef
0

20 1
2

∫ ∫ ∑= ( )





= ∆σ , ,

 l l e
C PiUi i ef ti

L

=
∑ = ( )









0
2

2
1λ σ∆ ,

. (17)

Where, according to the formula (14),
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 C C Mk2
2= π .

With consideration of (17), coefficients of the equation (16) can 
be expressed in the following way:

α λ σ
λ σ

t C PU l ei ii
L

i ef
C PUi ii

L
i ef

( ) = ( )







∑
=

( )
∑

=
2 1

2
0

2 1
2

∆
∆

,
,



t

   (18)

β λ σ
λ σ

t C PU l ei ii
L

i ef
C PUi ii

L
i ef

( ) = ( )







∑
=

( )
∑

=
2 1

2
0

2 1
2

∆
∆

,
,





=

















=

= ( )





∑

t

i ii
L

i ef
C P

C PU l e
i

2

2
2

1
2 2

0
2

2 2
λ σ

λ
∆ ,

UU tii
L

i ef=∑ ( )





1

2
∆σ ,

.  (19)

For m = 2, the equation (16) with coefficients in the form of the 
relationships (18) and (19) is as follows:

 
∂ ( )

∂
= −

∂ ( )
∂

+
∂ ( )

∂

U l t
t

t
U l t

l
t

U l t
l

,
( )

,
( )

,
α β

1
2

2

2 . (20)

The particular solution for the equation (20) is as follows [7, 18]:

 U l t
A t

e
l B t

A t,
( )

( )
( )( ) =

−
− ( )

1
2

2

2

π
 (21)

where:
 B(t) – the average increment in the crack length for the 

overall flying time t calculated as: 

    
B t t dtt( ) = ( )∫ α0 .          (22)

 A(t) – variance for the average increment in the crack length 
for the overall flying time t calculated as:

     
A t t dtt( ) = ( )∫ β0 .          (23)

Computation of the integral (22):
 

B t t dt C PU l e
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∆

. 
(24)

Computation of the integral (23):

A t t dt C PU l e
t

i ii
L

i ef

t C PUi
( ) = ( ) = ( )






∫ ∑ ∫=
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(25)

Where, according to the formula (14),

 C C Mk2
2= π .

4.  Determination of reliability and fatigue life for a 
selected structural component of an aircraft

The diagram of a growing risk of a catastrophic hazard due to the 
crack of a structural component is shown in Fig. 1.

The component is deemed damaged when the current length of a 
crack l exceeds the value of a critical threshold lkr or is equal thereto. 
Thus
 l − lkr ≥ 0.

Where both l and lkr are exemplifications of random variables L̂ t and 
Lkr. Therefore,

 ˆ = −L Lt kr . (26)

The function of a random variable density   is calculated from 
the relationship:

 f g l U l t dlt( ) , = −( ) ( )∞
∫0 . (27)

Therefore, the probability of the damage of a structural compo-
nent is expressed by the relationship:

 Q P L L f dt t kr t
' = − ≥{ } = ( )∞

∫0
0

  . (28)

Finally, the reliability of a component can be calculated by means 
of the function:

 R t f dt( ) = −
∞
∫1
0

( )  . (29)

Reliability of structural components can be also calculated in an-
other manner. The critical length of cracks is to be determined by 
means of a stress intensity coefficient in the following form:

 K M lk= σ π . (30)

Fig. 1. The diagram of a growing risk of a catastrophic hazard due to the crack 
of a structural component [18]

ˆ
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The coefficient that is determined by the relationship (30) be-
comes the critical parameter Kc when critical length lkr and critical 
stress σkr are reached. This critical parameter is referred to as the 
cracking resistance of a material:

 K M lc k kr kr= σ π . (31)

Hence, after a simple transformation:

 l K
Mkr

c

k kr
=

2

2 2σ π
.

By substitution of (31) and incorporation of a safety factor, one can 
calculate the maximum permissible (safe) length of a crack:

 l K
kMd

c

k kr
=

2

2 2σ π
, (32)

where:
 k – safety factor.

With consideration of the initial length l0 of a crack one can cal-
culate the maximum permissible increment of the crack length ld with 
use of the following formula:

 l l ld d= − 0 . (33)

Next, the formula (33) is used to find out the reliability of a struc-
tural component:

 R t U l t dll
l

d
d( ) ,= ( )−∞∫  (34)

Normalization of the integrand in the equation (34) leads to the 
following expression:

 R t U z t dzl

l B t
A t

d

d

( ) ,

( )
( )= ( )−∞

−∞
−

∫ , (35)

where:

 z l B t
A t

=
− ( )

( )
,

whilst B(t), A(t) are expressed by the relationships (24) and (25).

For the assumed reliability level, the upper limit for the integral 
(35) can be looked up in the tables for normal distribution. It enables 
to establish the relationship:

 Q l B t
A tl

d
d
=

− ( )
( )

 (36)

where:
 Qld – the upper limit for the integral (35), for that limit the 

integral value is equal to R t ld( ) .

Resolving of the equation (36) enables to calculate the value of 
the overall flying time (the desired lifetime of a structural component) 
that guarantees that the assumed reliability level is achieved.

5. Final remarks with a numerical example

To illustrate the newly developed method the following example 
shows the way to calculate expansion rates for the average length of a 
crack in a component made of steel with specific material properties 
and exposed to the effect of a real load spectrum. The calculations 
were carried out for the spectrum of loads with variable amplitudes 
after having the load spectrum transformed in the manner that is ex-
plained in Section 2. The original load spectrum corresponds to real 
load affecting the component [7]. The characteristic parameters of the 
transformed load used for further investigations as summarized in the 
Table 5 below. Table 5 shows boundary ranges Δσi for stress varia-
tions in the cycle within the presumed load thresholds i together with 
the frequencies Pi of their occurrence as well as coefficients that take 
into account the impact of the cycle asymmetry on crack expansion.

For the defined model material the following values of coeffi-
cients related to materials were assumed for calculations:

9

2,

5 10

m

C −

=

= ⋅ .

The presented example assumes that the initial length of the crack 
within the component is l0 = 10 mm, whilst the maximum permissible 
length of the crack was calculated with the use of the equation (32) 
and it equals to l mmd = 25 . It was also assumed for calculations that 
the coefficient that reflects retardation of the crack expansion after oc-
currence of overload cycles C1

P = 1, whereas the coefficient that takes 
into account the impact of the cycle asymmetry on crack expansion 
is defined by the empirical formula Ui = 0,55+0,33R̂ i + 0,12R̂ i2 Altera-
tion of the Mk coefficient in pace with expansion of the crack has 
been considered in the process of numerical computations according 
to the formula:

Table 5. Characteristic parameters for the transformed spectrum of loads

load threshold i 1 2 3 4 5 6 7

number of cycles 1 5 4 10 30 50 140

σi
max [mPa] 186 159 141 129 112 93 72

σi,śr
min [mPa] −28 −13 8 17 23 27 27

R̂ i coefficient −0,1505 −0,0818 0,0567 0,1317 0,2053 0,2903 0,375

Stress range Δσi,ef [mPa] 214 172 133 112 89 66 45

Ui factor 0,5030 0,5238 0,5691 0,5955 0,6228 0,6559 0,6906

Share of the threshold in the spectrum 
(frequency of occurrence) Pi

0,0042 0,0208 0,0167 0,0417 0,125 0,2083 0,5833
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 M l
b

l
b

l
bk = + 






 −







 + 






1 0 128 0 288 1 525

2 3
, , , , (37)

where:
 l – current length of the crack;
 b – width of the component towards the direction where the 

crack expands.
Then, the transformed equation (24) that expresses the average crack 

length was used to establish, based on the equation (5), the relationship 
between that crack length and the number of the load cycles N:

 B N l e
C M P U Nk i ii

L
i ef

( ) ( )
,

= ⋅
∑

−
⋅ ⋅ ⋅ ⋅ ⋅( )






⋅=

0

2
1

2

1
π σ∆

. (38)

The foregoing equation made it possible to calculate an increase 
in the average crack length from the initial value of l0 = 10 mm  to the 
maximum permissible limit l mmd = 25 , where the relationship was 

sought between the crack length and the N number load cycles. The 
variation of the average crack length as the function of load cycle 
numbers is shown in Fig. 2.

On the exclusive basis of calculations related to the growth of the 
average length of fatigue cracks B(N) it is easy to find out that the 
maximum permissible crack length l mmd = 25  is achieved after 
Nld = 57115 of load cycles. However, the comprehensive calcula-

tions of the fatigue life for a specific component take also into account 
the probabilistic factors, therefore the variance A(N)of the crack 
length as described by the formula (25) must be additionally included. 
For that purpose the equation (36) is used and it depends on the 
number of load cycles N established on the basis of the equation (5):

 Q l B N
A Nl

d
d
=

− ( )
( )

. (39)

For the assumed reliability level R N ld( ) ,* = 0 99958  the upper 
limit Qld = 3 34,  for the integral (35) can be looked up in tables of nor-
mal standard distribution. Having resolved the above equation the 
number of load cycles Nld = 56750  is obtained, which is the fatigue life 

of the examined component with consideration of probability factors.
The advantage of the foregoing method lies in the fact that the 

method takes account of physical phenomena that are associated with 
the variable spectrum of loads. It must be kept in mind that this study 
reveals the method that is suitable solely in the case when the mate-
rial of the structural component exhibits appropriate features. These 
properties are conventionally reflected as the material constant that 
occurs as the exponent m = 2 in the Paris formula. The values of mate-
rial constants that are involved in the method (except for the presumed 
m = 2 parameter) can be either found out from experiments or esti-
mated on the basis of operational data for expansion of cracks, where 
the method of moments or the trustworthiness function (e.g. the C 
coefficient of the Paris equation) are applied to calculations. When the 
fatigue life is to be determined for such a structural component where 
assumption of the exponent m ≠ 2 for the Paris equation is justified, 
the method already disclosed in [17] should be applied.

Fig. 2. Increase in the average crack length as the function of the number of 
load cycles
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