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APPLICATION OF THE PARIS FORMULA WITH M=2 AND THE VARIABLE LOAD
SPECTRUMTO A SIMPLIFIED METHOD FOR EVALUATION OF RELIABILITY
AND FATIGUE LIFE DEMONSTRATED BY AIRCRAFT COMPONENTS

UPROSZCZONA METODASZACOWANIA NIEZAWODNOSCI I TRWALOSCI ZME-
CZENIOWEJ ELEMENTOW KONSTRUKCJI STATKU POWIETRZNEGO
ZWYKORZYSTANIEM WZORU PARISA DLA M=2 | ZMIENNEGO WIDMA OBCIAZENIA*

The presented paper is the follow-up to the study, where the method for assessment of the fatigue life of a structural component
was outlined with consideration of the variable spectrum of loads and with use of the Paris formula for m # 2. Due to the different
nature inherent to analytic forms of solutions for the Paris equations with their exponential parameter m = 2, that special case is
the subject of a separate analysis. This paper also uses the transformation of a real spectrum with variable values of fatigue cycles
into a homogenous spectrum with weighted cycles. The method was developed that uses the transformed spectrum to evaluate
fatigue life for a selected component of the aircraft structure when the component suffers from an initial crack. The method for
modeling of the crack length expansion uses a differential equation that is then subjected to transformations to obtain a partial dif-
ferential equation of the Fokker-Planck type, which has a particular solution, explicitly the length density function for the crack of
the component in question. That length density function served subsequently to determine reliability and fatigue life of a structural
component where the crack length expanded from the permissible value 1, to the critical threshold Iy,..

Keywords: fatigue of structures, reliability, fatigue life, random spectrum of loads.

Prezentowany artykut jest uzupetnieniem pracy, w ktorej przedstawiono metodg oceny trwatosci zmeczeniowej elementu konstruk-
¢ji dla zmiennego widma obcigzenia z wykorzystaniem wzoru Parisa dla m#2. Ze wzgledu na odmiennos¢ postaci analitycznych
rozwiqzan dla wyktadnika rownania Parisa m=2, ten szczegolny przypadek rozwigzan zostal przedstawiony w niniejszym opra-
cowaniu. Pokazany zostal sposob przeksztatcenia widma rzeczywistego o zmiennych wartoSciach cykli w widmo jednorodne o
cyklach wazonych. Wykorzystujqc widmo przeksztatcone opracowano metode oceny trwatosci zmeczeniowej wybranego elementu
konstrukcji statku powietrznego z poczqtkowym peknigciem. Do modelowania przyrostu diugosci pekniecia wykorzystano rowna-
nie roznicowe, z ktorego po przeksztatceniu otrzymano rownanie rozniczkowe czgstkowe typu Fokkera-Plancka. Rozwigzaniem
szczegolnym tego rownania jest funkcja gestosci diugosci pekniecia elementu. Wykorzystujqc nastgpnie funkcje gestosci diugosci
pekniecia okreslono niezawodnosé i trwalosé¢ zmeczeniowq elementu konstrukcji dla peknigcia narastajgcego do wartosci dopusz-
czalnej l; mniejszej od wartosci krytycznej Iy,..

Stowa kluczowe: zmeczenie konstrukcji, niezawodnos¢, trwatos¢ zmeczeniowa, losowe widmo obcigzenia.

1. Introduction

Assessment of the fatigue life for components that are ‘operated’
under variable load spectrum is really troublesome to formulate ana-
lytical relationships. Thus, it is a main subject ofworld-wide scientific
research [1-6, 16, 18]. However, the assessment of the fatigue life
for components that are ‘operated’ under variable load spectrum is

crucial to manage flight safety forcivilian and military aircraft. There-
fore, there is a necessity to find simplified methods, that could be
practically applied in aviation transport [7, 9, 13—15, 18]. In this paper
the simplified method is used that has already been disclosed in [17].
The applied simplification consists in transformation of the variable
spectrum of loads to a homogenous one with weighted cycles.

(*) Tekst artykutu w polskiej wersji jezykowej dostepny w elektronicznym wydaniu kwartalnika na stronie www.ein.org.pl
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This paper is the follow-up to the previous study [17] where the
simplified method for assessment of the fatigue life of an aircraft
structural component was outlined with consideration for the variable
spectrum of loads and with use of the Paris formula for m # 2. The
forms of analytic solutions for this problem differ from each other de-
pending on the exponent parameter for the Paris formula, i.e. whether
m # 2or m = 2. It is why this study is dedicated to the case when the
exponent in the Paris formula m = 2.

It is assumed that the length of the initial crack within a structural
component is /; and then the crack expands due to the effect of a load
with a variable spectrum up to the length of that is still permissible
and safe as being less than the critical length of /. It is also assumed
that the expansion rate of the crack is subject to a deterministic rule
defined by the Paris equation [8]:

m
N C(AK)", (1)
where:
AK — variation range for the coefficient of stress intensity
factor,
C, m — material-dependent constants,
N — the variable the represents the number of load cycles
of a structural component.
For the case in question, i.e. when m = 2, the formula(1) adopts
the following form:

i _

2
T C(AK). @)

2. Determination of the crack expansion rate for m = 2
and for transformed spectrum of loads applied to a
structural component

Transformation of a real load spectrum with variable load values
into a homogenous spectrum with weighted cycles is based on the
following assumptions:

1) Each component of an aircraft is operated under variable loads
during the aircraft missions;

2) The spectrum of loads affecting the aircraft component during
a standard mission is available. The load is a multiplication of
a standard cycle;

3) [Itis assumed that the available standard load makes it possible
to calculate:

— the total number of load cycles during a single flight,

— the spectrum comprises L thresholds with the maximum val-

ues of stresses o™, o5 ,...,o%;

4) For the analyzed spectrum the repetition numbers of the maxi-
mum stress threshold is the following:
o™ occurs n; times, g,”* occurs times, ..., o, occurs n;,
times; Therefore, for the entire flight the repetition numbers of

the predefines stress threshold amounts to N, = Zleni ;

5) The minimum values for the predefined stress thresholds is
calculated with the use of the following formula:

ol 4T .t o
il i,2 i,n; .
= ,wherei=12,....L;

n;

min
i,sr

6) The values of maximum ¢;/”* and minimum o;/%" stress values

for operation cycles with frequencies P; of their occurrences
are summarized in Table 1;

Table 1. Maximum ;" and minimum o;"%" stress values for operation cycles

with frequencies P; of their occurrences

O-ima)( 01maX ozma)( o O-ima)( . o—LmaX

ol oy o . o’ - oy

n, n n; n
PRy | By B=N By
c C c C

7) The asymmetry coefficients for operation cycles are summa-
rized in Table 2.

Table 2. Asymmetry coefficients R; for operation cycles with U factors that
take into account the impact of these coefficients on the cracking

rates
it cycle 1 2 i L
R, R, R, R, R,
U, U, U U, U,
where:
min
I’é _ cTi,s'r 3 5 2
i = omax U; =oc) + ¢y Ri+oc3 R, ocp, 00 03— em-

1

pirical coefficients [11, 12].
8) Ranges for stress variations are calculated by the formula:

___max min
Ac; =o0; Oisr

and summarized in Table 3.

Table 3. Ranges for stress variations Ao; with frequencies P; of their concur-

rencies
cycle types 1 2 e i L
Ao; Ao, Ao, . Ao; Ao,
P; P, P, . P; e P,

9) Considering the effect exercised by overload cycles onto ex-
pansion of cracks (Table 4)

AC; o = CiPAG,»

where:
C?P— coefficients that represents retardation of the
crack expansion after occurrence of overload cycles [10].

Table 4. Variation ranges Ao, . for effective stress with consideration of over-

load cycles
cycle types 1 2 e i . L
coefficients ct ct .. cr (ol
AC; of DG f A, o e DG of . A0y of

For the foregoing assumptions the relationship (1) with regard to
the rate of crack development assumes the following form:
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m m

% =Cr? (Z, \BU; (A0 )" )M,;"z 2, 3)
where:
M, — the parameter that indicates the location of the crack
within the structural component and its dimensions with
respect to dimensions of the overall component [8].
Having considered all the possible load cycles the relationship (3)
adopts the form:

dl 2
e CnM} (Zlef}Ui (A0 ) )l , @)

Where: i=1,2,...,L

The relationship (4) can be expressed as a function of time or, more
precisely, the function of an aircraft flying time. For this purpose it is
assumed that:

N=t, ®)
where:
A — intensity (frequency) of occurrence of load cycles in a
structural component;
N —number of load cycles;
t — overall flying time of an aircraft.
For the case in question A= 1/At, where At stands for duration of
the fatigue cycle for the specific component. The easiest way to deter-
mine the At parameter is the use the following equation:

At = I , (6)
NC
where:
T — average duration of a standard flight of an aircraft and
assumed for determination of a load cycle,
N. — number of load cycles within a standard load
spectrum.
After the foregoing substitutions and transformations the formula
(4) adopts the following form:

dl L 2
= ACTM} (zizlp,u,. (o) jz . 7

The formula (7) makes it possible to calculate the rate of crack
expansions for the homogenous spectrum with weighted cycles of a
single type.

3. Determination of the density function for a crack
length as a function of time (flying time)

Let U,, stand for the probability that the crack length of a compo-
nent is 1 for the overall flying time t of an aircraft. The difference equa-
tion for the foregoing assumptions adopts the following form [7, 18]:

U[,t+At :(l—lAt)U[’t'F}.AtU[_Al’t s (8)

where:
Al — expansion of the crack length during a single equivalent
cycle.
The value of the crack length expansion, calculated on the basis of
the equation (7) amounts to:

2
Al =ACaM} (zleeU,.(Aci,ef) )mz . ©9)

The equation (8) can be rewritten in the functional form:

U(Lt+Ar)=(1-2A0)U(L,t)+ 2AtU (1= Alt) . (10)

where:
U(l, f) — the density function for the crack length after
expiring of the t total flying time expressed in flying hours;
(1-4At%) — probability that no equivalent load cycle occurs
during the time interval with the length of Az,
AAt — probability that an equivalent load cycle occurs during
the time interval with the length of Az.

The equation (10) can be converted into a partial differential equa-
tion. For that purpose the following approximations are made:

U(Z,t+At);U(l,t)+%At
ou(l o*U(1 an
U(l-ALt)=U(1,t)- (gl’t)AH% (Z’t)mz)2

After substitution of (11) for (10) the following formula is obtained:

ULy ,ou(hy) , U (1 )
=2 ;L Al —2
Py P (AD) (12)
where:
Al =ACr (ZlePiUi (Aoi,ef)sz,flAt .
Since, AAt=1, then:
2
= Cn(Zf=IBUi(AGi,ef-) jM,fz . (13)
Let:
CiM} =G, (14)
2
Al = cztzlegui(mi,ef) jz . (15)

Substitution of (15) for (12) leads to the following equation:

oU (L,t)

, 02U (Lt)
ot :

o

(16)

=280, 5E v (301 ] i+ 326 ZE U (800 0

The solution of the equation (7) should be substituted for the
crack length in the equation (16):

dl 2
o ACy (Z,'Lzlp;Ui (Aci,gf) )l ,

Il dx _IOC2(ZI N (Ao-i,ef)zjdt

Io_x

2G| TERY; Uie'zj
2[2”1PU (s01) ' (17)

l:loe

Where, according to the formula (14),
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C,=CaM} .

With consideration of (17), coefficients of the equation (16) can
be expressed in the following way:

2 lCZ(Z, 14 (AO',',B/')ZJI
a(t):ﬂ“c2(ziL:1PiUi(Ao'i,ef) jloe (18)
AC (zl RU (Ao )2]z ’
2 2| 2 Ui Aoier
B(1)=24 CZ(ZZ‘L=1PiUi(AO'i,ef) jloe =
2 26 XE PU(80s ) )
:)LCZZ(ZI,L:lEUi<A0i,ef)2) Iye 2( AU (801er) ) (19)

For m=2, the equation (16) with coefficients in the form of the
relationships (18) and (19) is as follows:

U (1,t) u(Ly) a2U(1 )
=-a(t - . 20
Py Q) py ﬁ( ) —— (20)
The particular solution for the equation (20) is as follows [7, 18]:

(U-B(1)?

U(lt)=—— ¢ 240 @1)
2 A(2)
where:
B(f) — the average increment in the crack length for the
overall flying time t calculated as:
t
B(t)=| al(t)dt

()= [jc(o)ar )

A(t) — variance for the average increment in the crack length
for the overall flying time t calculated as:

t
= t)dt
joﬂ( ) . (23)
Computation of the integral (22):
{ L [ Z.Cz(zl \BUi (A0 o7 ) ]
B(t):ja(t)dt:ACZ(Z[:]EU,-(AGLE/) jlo_[e dt =
0
2 t
:Acz(zlegU‘.(Ag‘.d)Zjlo 1 ~ m[z, \BU (Ao ) } _
ACZ(ZiL:IEUi<Aa,~,qf) j .
a 2
=10(elc2(z,":1PiUz(A‘71.e/) jf . .
(24)

Computation of the integral (23):

t 212G XL U (80 ) I
)=[B(1)dt = ACZ(Z_IPU (Aci) J Bfe 2( LG )dt:
0 0
2 2 2 |
/lcz P2 A(Aai,ef) Iy 2/1c2(zf:1p,-u,-(Aamf) jx
= .e =
2
ucz(zi:l U, (Acor ) j .
2
1 2 Mcz(z,-L:lPiUi(AGi,ef) )t
=ECZI§ (Zf:,gUI(Aoi,ef) )(e -1,
(25)

Where, according to the formula (14),

C,=CraM} .

4. Determination of reliability and fatigue life for a
selected structural component of an aircraft
The diagram of a growing risk of a catastrophic hazard due to the
crack of a structural component is shown in Fig. 1.

t
uLylea,)
ULy

/ \ \ 8
// \\ . X

),

T, L L.

Fig. 1. The diagram of a growing risk of a catastrophic hazard due to the crack
of a structural component [18]

The component is deemed damaged when the current length of a
crack / exceeds the value of a critical threshold /;, or is equal thereto.
Thus

1=1,,>0.

Where both / and /, are exemplifications of random variables L, and
Ly, Therefore,

=L~ L. (26)

The function of a random variable density sc is calculated from

the relationship:
JGoN =], g(l=3)U(Le)dl 27)

Therefore, the probability of the damage of a structural compo-
nent is expressed by the relationship:

0= P{L -y 20)= [ () dc . (9)

Finally, the reliability of a component can be calculated by means
of the function:

R(t)=1-[ fGe)dos . (29)

Reliability of structural components can be also calculated in an-
other manner. The critical length of cracks is to be determined by
means of a stress intensity coefficient in the following form:

K =Mool . (30)
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The coefficient that is determined by the relationship (30) be-
comes the critical parameter K, when critical length 1, and critical
stress oy, are reached. This critical parameter is referred to as the
cracking resistance of a material:

Kc:Mko-kT‘,ﬂlkr . (31)
Hence, after a simple transformation:

K2
Iy = 2 Cz .
M kO T
By substitution of (31) and incorporation of a safety factor, one can
calculate the maximum permissible (safe) length of a crack:

2
Iy = 7[}’ 7> (32)
kM kO jr Tt
where:
k — safety factor.
With consideration of the initial length 1; of a crack one can cal-
culate the maximum permissible increment of the crack length 1; with
use of the following formula:

Ly=l;—1. (33)

Next, the formula (33) is used to find out the reliability of a struc-
tural component:

R(y, =[" U(Lt)dl (34)

Normalization of the integrand in the equation (34) leads to the
following expression:

_pla=B®
O VAD U (2,1)dz, (35)
where:
_1-B@®)

Z—\/m,

whilst B(?), A() are expressed by the relationships (24) and (25).

Table 5. Characteristic parameters for the transformed spectrum of loads

For the assumed reliability level, the upper limit for the integral
(35) can be looked up in the tables for normal distribution. It enables
to establish the relationship:

1= B

g, 0

(36)

where:
Q)4 — the upper limit for the integral (35), for that limit the
integral value is equal to R(?), -

Resolving of the equation (36) enables to calculate the value of
the overall flying time (the desired lifetime of a structural component)
that guarantees that the assumed reliability level is achieved.

5. Final remarks with a numerical example

To illustrate the newly developed method the following example
shows the way to calculate expansion rates for the average length of a
crack in a component made of steel with specific material properties
and exposed to the effect of a real load spectrum. The calculations
were carried out for the spectrum of loads with variable amplitudes
after having the load spectrum transformed in the manner that is ex-
plained in Section 2. The original load spectrum corresponds to real
load affecting the component [7]. The characteristic parameters of the
transformed load used for further investigations as summarized in the
Table 5 below. Table 5 shows boundary ranges Ao; for stress varia-
tions in the cycle within the presumed load thresholds i together with
the frequencies P; of their occurrence as well as coefficients that take
into account the impact of the cycle asymmetry on crack expansion.

For the defined model material the following values of coeffi-
cients related to materials were assumed for calculations:

m=2,

C=5107".

The presented example assumes that the initial length of the crack
within the component is 1= 10 mm, whilst the maximum permissible
length of the crack was calculated with the use of the equation (32)

and it equals to Zi =25mm . It was also assumed for calculations that
the coefficient that reflects retardation of the crack expansion after oc-
currence of overload cycles C =1, whereas the coefficient that takes
into account the impact of the cycle asymmetry on crack expansion
is defined by the empirical formula U;=0,55+0,33R;+0,12R;? Altera-
tion of the M, coefficient in pace with expansion of the crack has
been considered in the process of numerical computations according
to the formula:

Load threshold i 1 2 3 4 5 6 7

Number of cycles 1 5 4 10 30 50 140

o/ [MPal 186 159 141 129 112 93 72

o/ [MPal -28 -13 8 17 23 27 27
R, coefficient -0,1505 -0,0818 0,0567 01317 0,2053 0,2903 0375

Stress range Ag; ¢/[MPa] 214 172 133 112 89 66 45
U, factor 0,5030 05238 0,5691 0,5955 06228 0,6559 0,6906
Share(f?;;huee::lr;f;zliLnrrt:r‘fcfe’;:””m 0,0042 0,0208 00167 0,0417 0,125 0,2083 0,5833
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) 3 On the exclusive basis of calculations related to the growth of the

M, =1 +O,128(£] —0,288(£] + 1’525(£J , (37) average length of fatigue cracks B(N) it is easy to find out that the

b b b maximum permissible crack length [, =25mm is achieved after

where: Ny, =57115 of load cycles. However, the comprehensive calcula-

[ — current length of the crack;
b — width of the component towards the direction where the
crack expands.
Then, the transformed equation (24) that expresses the average crack
length was used to establish, based on the equation (5), the relationship
between that crack length and the number of the load cycles N:

tions of the fatigue life for a specific component take also into account
the probabilistic factors, therefore the variance A(N)of the crack
length as described by the formula (25) must be additionally included.
For that purpose the equation (36) is used and it depends on the
number of load cycles N established on the basis of the equation (5):

2 o) _laZBW) 39
C'”'Mlz'(Z[L:IPI"UI”(AO-[,ef) }N 1y \/m . (39)

B(N)=1,-(e -1). (38)

The foregoing equation made it possible to calculate an increase For the assumed reliability level R(N),,~=0,99958 the upper

in the average crack length from the initial value of Iy=10 mm to the limit 0;, =3,34 for the integral (35) can be looked up in tables of nor-
mal standard distribution. Having resolved the above equation the

maximum permissible limit Td =25mm , where the relationship was . - Y - :
number of load cycles », 1, =56750 is obtained, which is the fatigue life

sought between the crack length and the N number load cycles. The
variation of the average crack length as the function of load cycle
numbers is shown in Fig. 2.

of the examined component with consideration of probability factors.
The advantage of the foregoing method lies in the fact that the
method takes account of physical phenomena that are associated with
the variable spectrum of loads. It must be kept in mind that this study
reveals the method that is suitable solely in the case when the mate-
rial of the structural component exhibits appropriate features. These
properties are conventionally reflected as the material constant that
occurs as the exponent m=2 in the Paris formula. The values of mate-
rial constants that are involved in the method (except for the presumed
m=2 parameter) can be either found out from experiments or esti-
mated on the basis of operational data for expansion of cracks, where
the method of moments or the trustworthiness function (e.g. the C
coefficient of the Paris equation) are applied to calculations. When the
fatigue life is to be determined for such a structural component where

w
o

n
(4]

n
o

i
n

!

e
o

average crack length [mm]

tg
0 10000 20000 30000 40000 50000 60000 70000 assumption of the exponent m#2 for the Paris equation is justified,

the method already disclosed in [17] should be applied.

o

number of load cycles

Fig. 2. Increase in the average crack length as the function of the number of
load cycles
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