PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of flocculation properties and floc structure of coal processing plant tailings in the presence of monovalent and divalent ions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Low-rank coals are generally processed with wet methods including washing, flotation, etc. Fine-sized tailings of these processes are discharged to tailing ponds with a significant amount of associated water which contains a high amount of dissolved ions. These tailings should be dewatered employing coagulation/flocculation in terms of technological and environmental aspects. In this study, the coagulation/flocculation behavior of coal processing plant tailings obtained from Manisa, Turkey was investigated in the presence of monovalent (Na+, K+) and divalent (Mg2+, Ca2+) ions and an anionic flocculant (SPP-600). First, the coagulation properties of coal tailings were determined. Then, the flocculation experiments were carried out, and the turbidity values of the suspensions were measured. Moreover, the sizes of the flocs were determined using a laser diffraction particle size analyzer to analyze the strength of the flocs. The results of the coagulation experiments showed that while divalent ions were more effective at 10-1 mol/dm3, higher settling rate and lower turbidity values were obtained in the presence of monovalent ions at 1 mol/dm3 concentration. The optimum flocculant dosage was obtained as 150 g/Mg from the flocculation experiments. The floc size and strength measurements indicated that the larger flocs were obtained with Na+ than Ca2+ in the presence of the flocculant. The strongest flocs were obtained at 10-1 mol/dm3 Ca2+ + 150 g/Mg flocculant. It can be concluded from this study that the coagulation followed by the flocculation method can be employed to obtain fast flocculation behavior and low turbidity for the dewatering of coal tailings.
Rocznik
Strony
747--758
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
  • Istanbul University-Cerrahpasa, Engineering Faculty, Mining Engineering Department, 34500 Buyukcekmece, Istanbul, Turkey
  • Istanbul University-Cerrahpasa, Engineering Faculty, Mining Engineering Department, 34500 Buyukcekmece, Istanbul, Turkey
  • Istanbul University-Cerrahpasa, Engineering Faculty, Mining Engineering Department, 34500 Buyukcekmece, Istanbul, Turkey
Bibliografia
  • AKTAS, Z., KARACAN, F., OLCAY, A., 1998. Centrifugal float–sink separation of fine Turkish coals in dense media, Fuel Processing Technology, 55, 235-250.
  • ALAM, N., OZDEMIR, O., HAMPTON, M. A., NGUYEN, A. V., 2011. Dewatering of coal plant tailings: Flocculation followed by filtration, Fuel, 90, 1, 26-35.
  • BORCHATE, S. S., KULKARNI, G. S., KORE, V. S., KORE, S. V., 2014. A Review on Applications of Coagulation-Flocculation and Ballast Flocculation for Water and Wastewater, International Journal of Innovations in Engineering and Technology, 4, 4, 216-223.
  • CHEN, S., YANG, Z., CHEN, L., TAO, X., TANG, L., HE, H., 2017. Wetting thermodynamics of low rank coal and attachment in flotation, Fuel, 207, 214-225.
  • CHENG, W. P., CHEN, P. H., YU, R. F., HSIEH, Y. J., HUANG, Y. W., 2011. Comparing floc strength using a turbidimeter, International Journal of Mineral Processing, 100, 3-4, 142-148.
  • DUZYOL, S., 2016. Turbidity removal of fine coal–water suspension by flocculation using Taguchi (L16) experimental design, Particulate Science and Technology, 36, 3, 351-356.
  • DUZYOL, S., SENSOGUT, C., 2015. The relation between hydrophobic flocculation and combustion characteristics of coal, Fuel Processing Technology, 137, 333-338.
  • EJTEMAEI, M., RAMLI, S., OSBORNE, D., NGUYEN, A. V., 2019. Synergistic effects of surfactant-flocculant mixtures on ultrafine coal dewatering and their linkage with interfacial chemistry, Journal of Cleaner Production, 232, 953-965.
  • GALLOUX, J., CHEKLI, L., PHUNTSHO, S., TIJING, L. D., JEONG, S., ZHAO, Y. X., GAO, B. Y., PARK, S. H., SHON, H. K., 2015. Coagulation performance and floc characteristics of polytitanium tetrachloride and titanium tetrachloride compared with ferric chloride for coal mining wastewater treatment, Separation and Purification Technology, 152, 94-100.
  • GRAY, S. R., RITCHIE, C. B., 2006. Effect of organic polyelectrolyte characteristics on floc strength, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 273, 1-3, 184-188.
  • GREGORY, J., BARANY, S., 2011. Adsorption and flocculation by polymers and polymer mixtures, Adv Colloid Interface Sci, 169, 1, 1-12.
  • GUERIN, L., FRANCES, C., LINE, A., COUFORT-SAUDEJAUD, C., 2019. Fractal dimensions and morphological characteristics of aggregates formed in different physico-chemical and mechanical flocculation environments, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 560, 213-222.
  • GUNGOREN, C., BAKTARHAN, Y., KURSUN UNVER, I., OZKAN, S. G., OZDEMIR, O., 2018. Characterization of Flocs in Dewatering of Coal Plant Tailings, Hittite Journal of Science & Engineering.
  • GUNGOREN, C., GUVEN, O., CINAR, M., OZDEMIR, O., 2019. An investigation of the effect of clay type on coal flotation along with DLVO theoretical analyses, International Journal of Coal Preparation and Utilization, 1-13.
  • HERMAWAN, M., BUSHELL, G. C., CRAIG, V. S. J., TEOH, W. Y., AMAL, R., 2004. Floc Strength Characterization Technique. An Insight into Silica Aggregation, Langmuir, 20, 6450-6457.
  • HOGG, R., 2000. Flocculation and dewatering, International Journal of Mineral Processing, 58, 223-236.
  • HUANG, Y., WANG, W., XING, L., HAN, G., LIU, J., FAN, G., 2016. Exploring on aqueous chemistry of micron-sized lignite particles in lignite–water slurry: Effects of pH on humics dissolution, Fuel, 181, 94-101.
  • JARVIS, P., JEFFERSON, B., GREGORY, J., PARSONS, S. A., 2005. A review of floc strength and breakage, Water Res, 39, 14, 3121-3137.
  • JOHNSON, S. B., FRANKS, G. V., SCALES, P. J., BOGER, D. V., HEALY, T. W., 2000. Surface chemistry–rheology relationships in concentrated mineral suspensions, International Journal of Mineral Processing, 58, 267-304.
  • KANCHANA, P., ELAKKINA KUMARAN, A., HAYAKAWA, Y., SEKAR, C., 2013. Effect of divalent metal ion impurities (Ba(2)(+), Ca(2)(+) and Mg(2)(+)) on the growth, structural and physical properties of KAP crystals, Spectrochim Acta A Mol Biomol Spectrosc, 103, 187-192.
  • KONG, L., BAI, J., LI, H., CHEN, X., WANG, J., BAI, Z., GUO, Z., LI, W., 2018. The mineral evolution during coal washing and its effect on ash fusion characteristics of Shanxi high ash coals, Fuel, 212, 268-273.
  • LEMANOWICZ, M., JACH, Z., KILIAN, E., GIERCZYCKI, A., 2011. Ultra-fine coal flocculation using dual-polymer systems of ultrasonically conditioned and unmodified flocculant, Chemical Engineering Journal, 168, 1, 159-169.
  • LI, G., DENG, L., CAO, Y., WANG, B., RAN, J., ZHANG, H., 2017. Effect of sodium chloride on fine coal flotation and discussion based on froth stability and particle coagulation, International Journal of Mineral Processing, 169, 47-52.
  • LI, H., HUANG, G., AN, C., ZHANG, W., 2012. Kinetic and equilibrium studies on the adsorption of calcium lignosulfonate from aqueous solution by coal fly ash, Chemical Engineering Journal, 200-202, 275-282.
  • LI, J., JIAO, S., ZHONG, L., PAN, J., MA, Q., 2013. Optimizing coagulation and flocculation process for kaolinite suspension with chitosan, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 428, 100-110.
  • LIN, Z., LI, P., HOU, D., KUANG, Y., WANG, G., 2017. Aggregation Mechanism of Particles: Effect of Ca2+ and Polyacrylamide on Coagulation and Flocculation of Coal Slime Water Containing Illite, Minerals, 7, 2.
  • LIN, Z., SUN, X., WANG, Q., CAO, J., WANG, C., KUANG, Y., 2020. Evaluation of the effect of hydraulic shear intensity on coal-slime water flocculation in a gradient fluidized bed, Powder Technology, 360, 392-397.
  • MORSHEDI, D., MOHAMMADI, Z., AKBAR BOOJAR, M. M., ALIAKBARI, F., 2013. Using protein nanofibrils to remove azo dyes from aqueous solution by the coagulation process, Colloids Surf B Biointerfaces, 112, 245-254.
  • NASSER, M. S., JAMES, A. E., 2006. The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behaviour of kaolinite suspensions, Separation and Purification Technology, 52, 2, 241-252.
  • OFORI, P., NGUYEN, A. V., FIRTH, B., MCNALLY, C., OZDEMIR, O., 2011. Shear-induced floc structure changes for enhanced dewatering of coal preparation plant tailings, Chemical Engineering Journal, 172, 2-3, 914-923.
  • OZKAN, A., ILIKAY, I. S., ESMELI, K., 2019. Lignite flotation in inorganic salt solutions, International Journal of Coal Preparation and Utilization, DOI: 10.1080/19392699.2019.1700959.
  • OZKAN, A., ONER, B., ONEN, V., DUZYOL, S., 2016. Flocculation of coal suspension with mono/dual polymer systems and contribution of Ca(II)/Mg(II) ions, Separation Science and Technology, 51, 1, 106-114.
  • PALOMINO, D., HUNKELER, D., STOLL, S., 2012. Salt concentration influence on the efficiency of two cationic polymeric flocculants, Colloid and Polymer Science, 290, 13, 1301-1308.
  • PATRA, A. S., PATRA, P., CHOWDHURY, S., MUKHERJEE, A. K., PAL, S., 2020. Cationically functionalized amylopectin as an efficient flocculant for treatment of coal suspension, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586, 124229.
  • RUSHTON, A., WARD, A. S., HOLDICH, R. G., 2000, Solid–liquid filtration and separation technology, Wiley-VCH, New York.
  • SABAH, E., CENGIZ, I., 2004. An evaluation procedure for flocculation of coal preparation plant tailings, Water Res, 38, 6, 1542-1549.
  • SABAH, E., ERKAN, Z. E., 2006. Interaction mechanism of flocculants with coal waste slurry, Fuel, 85, 3, 350-359. SABAH, E., YUZER, H., CELIK, M. S., 2004. Characterization and dewatering of fine coal tailings by dual-flocculant systems, International Journal of Mineral Processing, 74, 1-4, 303-315.
  • SONG, S., VALDIVIESO, A. L., 1998. Hydrophobic Flocculation Flotation for Beneficiating Fine Coal and Minerals, Separation Science and Technology, 33, 8, 1195-1212.
  • TAO, D., GROPPO, J. G., PAREKH, B. K., 2000a. Enhanced ultrafine coal dewatering using flocculation filtration processes, Minerals Engineering, 13, 2, 163-171.
  • TAO, D., GROPPO, J. G., PAREKHM, B. K., 2000b. Effects of Vacuum Filtration Parameters on Ultrafine Coal Dewatering, Coal Preparation, 21, 3, 315-335.
  • UCBEYIAY, H., 2013. Hydrophobic flocculation and Box–Wilson experimental design for beneficiating fine coal, Fuel Processing Technology, 106, 1-8.
  • WANG, H., ZHAO, X., HAN, X., TANG, Z., LIU, S., GUO, W., DENG, C., GUO, Q., WANG, H., WU, F., MENG, X., GIESY, J. P., 2017. Effects of monovalent and divalent metal cations on the aggregation and suspension of Fe3O4 magnetic nanoparticles in aqueous solution, Sci Total Environ, 586, 817-826.
  • WU, Z., WANG, X., LIU, H., ZHANG, H., MILLER, J. D., 2016. Some physicochemical aspects of water-soluble mineral flotation, Adv Colloid Interface Sci, 235, 190-200.
  • YANG, Z., LIU, S., ZHANG, W., WEN, Q., GUO, Y., 2019. Enhancement of coal waste slurry flocculation by CTAB combined with bioflocculant produced by Azotobacter chroococcum, Separation and Purification Technology, 211, 587-593.
  • YANG, Z., WANG, W., LIU, S., 2017. Flocculation of Coal Waste Slurry Using Bioflocculant Produced by Azotobacter chroococcum, Energy & Fuels, 31, 2, 1460-1467.
  • ZHAO, S., SUN, C., ZHANG, Y., JIAO, T., ZHANG, W., LIANG, P., ZHANG, H., 2019. Determination of mercury occurrence and thermal stability in high ash bituminous coal based on sink-float and sequential chemical extraction method, Fuel, 253, 571-579.
  • ZHU, Y.-H., ZHANG, Q., YANG, X., ZHAO, E.-Y., SUN, T., ZHANG, X.-B., WANG, S., YU, X.-Q., YAN, J.-M., JIANG, Q., 2019. Reconstructed Orthorhombic V2O5 Polyhedra for Fast Ion Diffusion in K-Ion Batteries, Chem, 5, 1, 168-179.
  • ZOU, W., GONG, L., HUANG, J., ZHANG, Z., SUN, C., ZENG, H., 2019. Adsorption of hydrophobically modified polyacrylamide P(AM-NaAA-C16DMAAC) on model coal and clay surfaces and the effect on selective flocculation of fine coal, Minerals Engineering, 142, 105887.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-621e4784-bd18-4e10-b5c7-f7e463a664ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.