PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations of the transport possibilities of a new vibratory conveyor equipped with a single electrovibrator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, a new vibratory conveyor (patent pending) equipped with a single electro-vibrator intended for an accurate material dosage is investigated. The possibilities of material transportation in the circum-resonant zone were investigated analytically and by simulations [1]. Furthermore, the dependencies of the transport velocity of the tested conveyor as functions of the excitation frequency were determined. Favorable excitation frequencies at transports in the main and reversal directions were found, and the high usefulness of the machine in the production lines requiring accurate material dosage was indicated. A control strategy allowing for a sudden stop of the transported material was also proposed.
Czasopismo
Rocznik
Strony
127--136
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • University of Science and Technology, Doctoral School; 30 Mickiewicza Alley, Building D-1, Kraków 30-059, Poland
autor
  • University of Science and Technology, Faculty of Mechanical Engineering and Robotics; 30 Mickiewicza Alley, Building D-1, Kraków 30-059, Poland
Bibliografia
  • 1. US 5979640 Vibrating conveyor drive with continuously adjustable stroke. Publ. 091.11.1997.
  • 2. Kipriyanov, F. & Savinykh, P. The results of the study of the vibratory conveying machine operating modes. Transportation Research Procedia. 2022. Vol. 63. P. 721-729.
  • 3. Czubak, P. & Surówka, W. Influence of the Excitation Frequency on Operations of the Vibratory Conveyor Allowing for a Sudden Stopping of the Transport. Vibrations in Physical Systems. 2020. Vol. 31. No. 3. P. 1-12.
  • 4. Surówka, W. & Czubak, P. Numerical review of selected solutions of vibratory feeders capable of dosing feed material. Vibrations in Physical Systems. 2020. Vol. 31. No. 3. P. 1-8.
  • 5. Zejer, T. & Olesiński, M. & Musioł, K. & Okoń, T. Stopping Material Transport on Vibrating Feeder Chute, In: International Colloquium Dymamesi 2021 – Dynamics of Machines and Mechanical Systems with Interactions. Cracow (Poland). March 2-3, 2021.
  • 6. Winkler, G. Analysing the vibrating conveyor. International Journal of Mechanics. 1978. Vol. 20. No. 9. P. 561-570.
  • 7. US 4771894. Device for separating materials of value from a mixture. Publ. 20.09.1988.
  • 8. US 6253908 B1. Vibratory conveyor. Publ. 03.07.2001.
  • 9. Blekhman, I.I. & Izrailevich, I. Synchronization in science and technology. ASME press, 1988.
  • 10. Polishchuk, L. & Khmara, O. & Piontkevych, O. & Adler, O. & Tungatarova, A. & Kozbakova, A. Dynamics of the conveyor speed stabilization system at variable loads. Informatyka, Automatyka, Pomiary W Gospodarce i Ochronie Środowiska. 2022. Vol. 12. No. 2. P. 60-63.
  • 11. Despotović, Ž.V. & Urukalo, D. & Lečić, M.R. & Ćosić, A. Mathematical modeling of resonant linear vibratory conveyor with electromagnetic excitation: simulations and experimental results. Applied Mathematical Modelling. 2017. Vol. 41. P. 1-24.
  • 12. US 989958 A. Device for Damping Vibrations of Bodies. Publ. 18.04.1911.
  • 13. Gupta, Y.P. & Chandrasekaran, A.R. Absorber System for Earthquake Excitations. In: Proceeding of the Fourth World Conference on Earthquake Engineering. Santiago, Chile. January 1969. P. 139-148.
  • 14. Hou, Y. & Peng, H. & Fang, P. & Zou, M. & Liang, L. & Che, H. Synchronous characteristics of two excited motors in an anti-resonance system. Journal of Advanced Mechanical Design Systems, and Manufacturin. 2019. Vol. 13. No. 3. P. 1-14.
  • 15. US 2951581 A. Vibratory Conveyors. Publ. 06.09.1960.
  • 16. Khalil Gazi Md. & Shahidul Islam Md. An analytical study of vibration neutralizers. Indian Journal of Engineering & Material Science. 1999. Vol. 6. P. 256-262.
  • 17. Richiedei, D. & Tamellin, I. & Trevisani, A. A general approach for antiresonance assignment in undamped vibrating systems exploiting auxiliary systems. In: Uhl T. (eds). Advances in Mechanism and Machine Science. 2019. Vol. 73. P. 4085-4094.
  • 18. Despotović, Ž.V. & Lečić, M.R. & Djuric, A. Vibration control of resonant vibratory feeders with electromagnetic excitation. FME Transactions. 2014. Vol. 42. No. 4. P. 281-289.
  • 19. Liu, J. & LI, Y. & LIU, J. & Xu, H. Dynamical analysis and control of driving point anti-resonant vibrating machine based on amplitude stability. Chinese Journal of Mechanical Engineering. 2006. Vol. 1. P. 145-148.
  • 20. Michalczyk, J. Phenomenon of Force Impulse Restitution in Collision Modelling. Journal of Theoretical and Applied Mechanics. 2008. Vol. 46. No. 4. P. 897-908.
  • 21. Michalczyk, J. & Gajowy, M. Operational properties of vibratory conveyors of the antiresonance type. Archives of Mining Sciences. 2018. Vol. 63. No. 2. P. 301-319.
  • 22. Lim, G.H. On the conveying velocity of a vibratory feeder. Computers & Structures. 1997. Vol. 62. No. 1. P. 197-203.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-621e30a6-8ce6-4bb5-bf9e-78163a1f8b22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.