PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Delineating Ababi Mountains spring recharge zones using combined isotope hydrology and geophysical methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sustainable groundwater management requires accurate identification of spring recharge zones, particularly in volcanic regions where water resources are critical. This study aimed to delineate the groundwater recharge zone of the Ababi Spring in Bali’s Karangasem Regency by integrating isotope hydrological and geophysical techniques. Water samples were collected from five locations (211-978 m a.s.l.) and analysed for stable isotopes (δ2H or δD and δ18O). Vertical electrical sounding and audio magnetotelluric surveys were conducted to validate findings and map subsurface structures. The local meteoric water line was established (δ2H = 4.4912δ18O + 7.1419) and an isotope-elevation relationship was developed. The spring water exhibited depleted isotopic values (δ18O: -7.706‰, δ2H: -39.748‰) compared to local precipitation, indicating a higher-altitude source. The analysis identified the recharge zone at approximately 2,118 m a.s.l. Geophysical surveys revealed subsurface structures connecting the recharge area to the spring, with resistivity patterns indicating preferential flow paths going through fractured volcanic rocks. The effectiveness of this integrated approach was further validated through additional isotopic analysis of rainfall at 1,514 m a.s.l. This supported the established isotope-elevation relationship model (R2 = 0.6847). The study demonstrates the value of combining hydrochemical and geophysical methods for accurate recharge zone delineation in a volcanic terrain, particularly in regions with complex hydrogeological settings. These findings provide crucial information for implementing targeted conservation strategies and ensuring sustainable water resource management in the Karangasem region, while establishing a methodological framework applicable to similar volcanic environments.
Wydawca
Rocznik
Tom
Strony
163--171
Opis fizyczny
Bibliogr. 46 poz., mapa, tab.
Twórcy
  • Udayana University, Faculty of Mathematics and Natural Sciences, Physics Study Program, Kampus Bukit Jimbaran, Denpasar, Bali, 80361, Indonesia
  • Udayana University, Postgraduate Faculty, Professional Engineer Education Study Program, Denpasar, Jl. Raya Kampus UNUD, Kampus Bukit Jimbaran, Jimbaran, Kuta Selantan, Kabupaten Badung, Bali 80361, Indonesia
  • Ngurah Rai University, Faculty of Science and Technology, Civil Engineering Study Program, Jl. Kampus Ngurah Rai No. 30, Penatih, Kec. Denpasar Tim., Kota Denpasar, Bali 80238, Indonesia
Bibliografia
  • Aguedai, H. et al. (2022) “Hydrochemical and geophysical characterization of the Mnasra coastal aquifers (Rharb basin NW Morocco),” Arabian Journal of Geosciences, 15(18), 1480. Available at: https://doi.org/10.1007/s12517-022-10738-7.
  • Ahmed, M., Chen, Y. and Khalil, M.M. (2022) “Isotopic composition of groundwater resources in arid environments,” Journal of Hydrology, 609, 127773. Available at: https://doi.org/10.1016/j.jhydrol.2022.127773.
  • Ailes, C.E. and Rodriguez, B.D. (2015) Magnetotelluric data collected to characterize aquifers in the San Luis Basin, New Mexico. Open-File Report, 2014–1248. Reston, VA: U.S. Geological Survey. Available at: https://pubs.usgs.gov/of/2014/1248/pdf/ofr2014-1248.pdf (Accessed: September 10, 2024).
  • Ardana, P. et al. (2022) “The stable isotopes approach as tracers to investigate the origin of groundwater in the unconfined aquifer of Denpasar, Bali,” Acta Montanistica Slovaca, 27(4), pp. 968–981. Available at: https://doi.org/10.46544/AMS.v27i4.11.
  • Bai, E. et al. (2019) “Using the magnetotelluric method for detecting aquifer failure characteristics under high-intensity mining of thick coal seams,” Energies, 12(22), 4397. Available at: https://doi.org/10.3390/en12224397.
  • Benettin, P. et al. (2018) “Effects of climatic seasonality on the isotopic composition of evaporating soil waters,” Hydrology and Earth System Sciences, 22(5), pp. 2881–2890. Available at: https://doi.org/10.5194/hess-2018-40.
  • Bhatnagar, S. et al. (2022) “Delineation of aquifers favorable for groundwater development using Schlumberger configuration resistivity survey techniques in Rajouri district of Jammu and Kashmir, India,” Groundwater for Sustainable Development, 17, 100764. Available at: https://doi.org/10.1016/j.gsd.2022.100764.
  • Chmielarski, M. et al. (2022) “Defining the bounds of using radioactive isotope tracers to sense past groundwater recharge under transient state conditions,” Geophysical Research Letters,” 49(23), e2021GL096570. Available at: https://doi.org/10.1029/2021GL096570.
  • Chou, M.-L. et al. (2022) “Identification of the water source and groundwater recharge in a paddy field using stable hydrogen and oxygen isotopes,” Water Supply, 22(7), pp. 6443–6457. Available at: https://doi.org/10.2166/ws.2022.232.
  • Consoli, F. et al. (2020) “Laser produced electromagnetic pulses: Generation, detection and mitigation,” High Power Laser Science and Engineering, 8, e22. Available at: https://doi.org/10.1017/hpl.2020.13.
  • Dey, S. and Majumdar, A. (2024) “Current status of pollution in major rivers and tributaries of India and protection-restoration strategies,” in S. Kanhaiya et al. (eds.) Rivers of India. Cham: Springer International Publishing, pp. 69–93. Available at: https://doi.org/10.1007/978-3-031-49163-4_4.
  • Feng, S., Liu, X. and Li, H. (2020) “Spatial variations of δD and δ18O in lake water of western China and their controlling factors,” Journal of Lake Sciences, 32(4), pp. 1199–1211. Available at: https://doi.org/10.18307/2020.0426.
  • Fenta, M.C. et al. (2020) “Hydrogeological framework of the volcanic aquifers and groundwater quality in Dangila Town and the surrounding area, Northwest Ethiopia,” Groundwater for Sustainable Development, 11, 100408. Available at: https://doi.org/10.1016/j.gsd.2020.100408.
  • Grayver, A. (2024) “Unravelling the electrical conductivity of earth and planets,” Surveys in Geophysics, 45(1), pp. 187–238. Available at: https://doi.org/10.1007/s10712-023-09813-9.
  • Hemmerle, H. et al. (2021) “Altitude isotope effects in Mediterranean high-relief terrains: A correction method to utilize stream water data,” Hydrological Sciences Journal, 66(9), pp. 1409–1418. Available at: https://doi.org/10.1080/02626667.2021.1928672.
  • Jiang, Y. et al. (2024) “The transmission of isotopic signals from precipitation to groundwater and its controls: An experimental study with soil cylinders of various soil textures and burial depths in a monsoon region,” Journal of Hydrology, 631, 130746. Available at: https://doi.org/10.1016/j.jhydrol.2024.130746.
  • Kankaala, P. et al. (2023) “Temporal and lake-specific variations in oxygen and hydrogen stable isotopes in a boreal lake-chain during two hydrologically differing years,” Inland Waters, 13(3), pp. 362–373. Available at: https://doi.org/10.1080/20442041.2023.2255118.
  • Kim, S. et al. (2022) “An optimal strategy for determining triple oxygen isotope ratios in natural water using a commercial cavity ring-down spectrometer,” Geosciences Journal, 26(5), pp. 637–647. Available at: https://doi.org/10.1007/s12303-022-0009-y.
  • Khosravi, M., Afshar, A. and Molajou, A. (2022) “Decision tree-based conditional operation rules for optimal conjunctive use of surface and groundwater,” Water Resources Management, 36(6), pp. 2013–2025. Available at: https://doi.org/10.1007/s11269- 022-03123-2.
  • Liotta, M. et al. (2008) “Isotopic composition of single rain events in the central Mediterranean,” Journal of Geophysical Research: Atmospheres, 113(D16), 2008JD009996. Available at: https://doi.org/10.1029/2008JD009996.
  • Martínez, R. et al. (2020) “On the use of an IoT integrated system for water quality monitoring and management in wastewater treatment plants,” Water, 12(4), 1096. Available at: https://doi.org/10.3390/w12041096.
  • Molajou, A. et al. (2023) “A new paradigm of water, food, and energy nexus,” Environmental Science and Pollution Research, 30, pp. 107487–107497. Available at: https://doi.org/10.1007/s11356-021-13034-1.
  • Ngene, B.U. et al. (2021) “Assessment of water resources development and exploitation in Nigeria: A review of integrated water resources management approach,” Heliyon, 7(1). Available at: https://doi.org/10.1016/j.heliyon.2021.e05955.
  • Nuha, A. et al. (2020) “Determination of groundwater recharge area by using hydroisotope technic of Sei Bingei area and surrounding areas, Langkat Regency, North Sumatra,” Journal of Applied Geology, 5(1), pp. 13–24. Available at: https://doi.org/10.22146/jag.51627.
  • Ossa, J. et al. (2021) “Representación espacial de zonas de recarga del agua subterránea a partir de mapas isotópicos de precipitación. Caso de estudio: Valle de Aburrá, Colombia [Recharge área maps from precipitation isoscapes. Case study: Aburrá valley, Colombia],” Boletin Geologico y Minero, 132(1–2), pp. 65–75. Available at: https://doi.org/10.21701/bolgeomin.132.1-2.007.
  • Palano, M. (2022) “Editorial for the Special Issue: “Ground Deformation Patterns Detection by InSAR and GNSS Techniques,” Remote Sensing, 14(5), 1104. Available at: https://doi.org/10.3390/rs14051104.
  • Pang, Z. et al. (2017) “An isotopic geoindicator in the hydrological cycle,” Procedia Earth and Planetary Science, 17, pp. 534–537. Available at: https://doi.org/10.1016/j.proeps.2016.12.135.
  • Qiu, X. et al. (2022) “Use of hydrogen and oxygen isotopes to understand evaporation from enclosed waterbodies,” Journal of Environmental Engineering and Landscape Management, 30(1), pp. 220–225. Available at: https://doi.org/10.3846/jeelm.2022.16299.
  • Rich, D. et al. (2023) “A review of water reuse applications and effluent standards in response to water scarcity,” Water Security, 20, 100154. Available at: https://doi.org/10.1016/j.wasec.2023.100154.
  • Rizvi, S.S. et al. (2023) “Role of stable isotopes in groundwater resource management,” in S. Madhav et al. (eds.) Hydrogeochemistry of aquatic ecosystems. Hoboken, NJ: Wiley & Sons Ltd., pp. 333–356. Available at: https://doi.org/10.1002/9781119870562.ch15.
  • Roy, A., Thakur, B. and Debsarkar, A. (2021) “Water pollution and treatment technologies,” in P.K. Sikdar (ed.) Environmental management: Issues and concerns in developing countries. Cham: Springer International Publishing, pp. 79–106. Available at: https://doi.org/10.1007/978-3-030-62529-0_5.
  • Sallée, J.-B. et al. (2021) “Summertime increases in upper-ocean stratification and mixed-layer depth,” Nature, 591(7851), pp. 592–598. Available at: https://doi.org/10.1038/s41586-021-03303-x.
  • Sankoh, A.A. et al. (2021) “A review on the application of isotopic techniques to trace groundwater pollution sources within developing countries,” Water, 14(1), 35. Available at: https://doi.org/10.3390/w14010035.
  • Satrio, S. et al. (2024) “Study of environmental isotopes and hydrochemical characteristics of groundwater from springs at archaeological sites in Dompu Regency, West Nusa Tenggara, Indonesia,” Indonesian Journal of Chemistry, 24(1), pp. 275–283. Available at: https://doi.org/10.22146/ijc.83792.
  • Scott Jansing, M., Mahichi, F. and Dasanayake, R. (2020) “Sustainable irrigation management in paddy rice agriculture: A comparative case study of Karangasem Indonesia and Kunisaki Japan,” Sustainability, 12(3), 1180. Available at: https://doi.org/10.3390/su12031180.
  • Sorokin, V. et al. (2023) “Telluric currents generated by solar flare radiation: physical model and numerical estimations,” Atmosphere, 14(3), 458. Available at: https://doi.org/10.3390/at-mos14030458.
  • Suryanata, P.B. et al. (2024) “Subsurface structure of Bali Island inferred from magnetic and gravity modeling: New insights into volcanic activity and migration of volcanic centers,” International Journal of Earth Sciences, 113(3), pp. 523–538. Available at: https://doi.org/10.1007/s00531-024-02398-7.
  • Sutawidjaja, I.S. and Sugalang, S. (2007) “Multi-geohazards of Ende city area,” Indonesian Journal on Geoscience, 2(4), pp. 217–233. Available at: https://doi.org/10.17014/ijog.2.4.217-233.
  • Toulier, A. et al. (2019) “Multidisciplinary study with quantitative analysis of isotopic data for the assessment of recharge and functioning of volcanic aquifers: Case of Bromo-Tengger volcano, Indonesia,” Journal of Hydrology: Regional Studies, 26, 100634. Available at: https://doi.org/10.1016/j.ejrh.2019.100634.
  • Vijayaprabhu, S. et al. (2024) “Groundwater investigation through vertical electrical sounding: A case study from southwest Neyveli Basin, Tamil Nadu,” International Journal of Energy and Water Resources, 8(1), pp. 17–34. Available at: https://doi.org/10.1007/s42108-022-00182-4.
  • Waldeck, A.R. et al. (2022) “Calibrating the triple oxygen isotope composition of evaporite minerals as a proxy for marine sulfate,” Earth and Planetary Science Letters, 578, 117320. Available at: https://doi.org/10.1016/j.epsl.2021.117320.
  • Xia, C. et al. (2023) “Stable isotopes reveal the surface water- groundwater interaction and variation in young water fraction in an urbanized river zone,” Urban Climate, 51, 101641. Available at: https://doi.org/10.1016/j.uclim.2023.101641.
  • Xu, D. et al. (2019) “Mapping soil layers using electrical resistivity tomography and validation: Sandbox experiments,” Journal of Hydrology, 575, pp. 523–536. Available at: https://doi.org/10.1016/j.jhydrol.2019.05.036.
  • Zamrsky, D., Oude Essink, G.H.P. and Bierkens, M.F.P. (2024) “Global impact of sea level rise on coastal fresh groundwater resources,” Earth’s Future, 12(1), e2023EF003581. Available at: https://doi.org/10.1029/2023EF003581.
  • Zhang, Y. et al. (2023) “Isotopic variations in surface waters and groundwaters of an extremely arid basin and their responses to climate change,” Hydrology and Earth System Sciences, 27(21), pp. 4019–4038. Available at: https://doi.org/10.5194/hess-27-4019-2023.
  • Zhong, J. et al. (2021) “Synchronous evaporation and aquatic primary production in tropical river networks,” Water Research, 200, 117272. Available at: https://doi.org/10.1016/j.watres.2021.11
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-621b2e65-56f2-42cc-9d72-f36593641cf5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.