PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sources of anthropogenic contamination of soil in the Upper Silesian Agglomeration (southern Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This assessment of the environmental degradation by toxic chemical elements within the Upper Silesian Industrial Agglomeration of Poland encompasses the impact of mining for base metals and coal and non-ferrous metalurgy, as well as the discharge of industrial and municipal sewage causing strong degradation of the natural environment in the area over the years. The content of the following elements: Ag, Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, P, Pb, S, Sn, Sr, Ti, V and Zn has been assessed both in the topsoil (0.0-0.3 m) and the subsoil (0.8-1.0 m) of the study area. Concentrations of the elements in the <2 mm soil fraction were analysed using the ICP-OES method after Aqua regia extraction. The soil contamination was assessed based on the enrichment factor (EF) and geo-accumulation index (Igeo). The tests revealed elevated contents of several metals, arsenic and sulphur, exceeding the regional geochemical background levels. Unusually high concentrations of the following elements: As (up to 5,300 mg/kg), Cd (up to 388.8 mg/kg), Cr (up to 1,638 mg/kg), Cu (up to 13,230 mg/kg), Hg (up to 23.44 mg/kg), Mo (up to 93.7 mg/kg), Pb (up to 54,940 mg/kg), Sn (up to 701 mg/kg) and Zn (up to 88,120 mg/kg) were recorded. The highest concentrations of these elements were found in the proximity of smelters and residential areas. The spatial distribution of metals is shown as interpolated data on maps and compared with the locations of mining and industrial sites.
Rocznik
Strony
988--1003
Opis fizyczny
Bibliogr. 113 poz., rys., tab., wykr.
Twórcy
  • Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • Polish Geological Institute - National Research Institute, Królowej Jadwigi 1, 41-200 Sosnowiec, Poland
Bibliografia
  • 1. Acosta, J.A., Martinez-Martinez, S., Zornoza, R., Carmona, D.M., Kabas, S., 2011. Multivariate statistical and GIS-based approach to evaluate heavy metals behaviour in mine sites for future reclamation. Journal of Geochemical Exploration, 109: 8-17.
  • 2. Adamo, P., Arienzo, M., Bianco, M.R., Terribile, F., Violante, P., 2002. Heavy metal contamination of the soils used for stocking raw materials in the former ILVA iron-steel industrial plant of Bagnoli (southern Italy). Science of the Total Environment, 295: 7-34.
  • 3. Alary, J., Bourbon, P., Esclassan, J., Lepert, J.C., Vandaele, J., Klein, F., 1983. Zinc, lead, molybdenum contamination in the vicinity of an electric steelworks and environmental response to pollution abatement by bag filter. Water, Air and Soil Pollution, 20: 137-145.
  • 4. Alloway, B.J., 2012. Sources of heavy metals and metalloids in soils. Environmental Pollution, 22: 11-50.
  • 5. Barbieri, M., Sappa, G., Vitale, S., Parisse, B., Battistel, M., 2014. Soil control of trace metals concentrations in landfill: a case study of the largest landfill in Europe, Malagrotta, Rome. Journal of Geochemical Exploration, 143: 146-154.
  • 6. Barbieri, M., 2016. The importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to evaluate the soil contamínation. Journal of Geology & Geophysícs, 5: 1-4.
  • 7. Basta, N.T., Gradwohl, R., 1998. Remediation of heavy metal-contaminated soil using rock phosphate (Oklahoma). Better Crops, 82: 29-31.
  • 8. Basta, N.T., Gradwohl, R., Snethen, K.L., Schroder, J.L., 2001. Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate. Journal of Environmental Quality, 30: 1222-1230.
  • 9. Basta, N.T., McGowen, S.L., 2004. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environmental Pollution, 127: 73-82.
  • 10. Bauerek, A., Cabala, J., Smieja-Król, B., 2009. Mineralogical alterations of Zn-Pb flotation wastes of the Mississippi Valley Type ores (Southern Poland) and their impact on contamination of rain water runoff. Polish Journal of Environmental Studies, 18: 781-788.
  • 11. Bhattacharyya, S., Donahoe, R.J., Patel, D., 2009. Experimental study of chemical treatment of coal fly ash to reduce the mobility of priority trace elements. Fuel, 88: 1173-1184.
  • 12. Blaser, P., Zimmermann, S., Luster, J., Shotyk, W., 2000. Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils. The Science of the Total Environment, 249: 257-280.
  • 13. Bojakowska, I., Sokołowska, G., 2001. Mercury in mineral raw materials exploited in Poland as potential sources of environmental pollution (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 394: 5-54.
  • 14. Buła Z., Kotas A., 1994. Geological Atlas of the Upper Silesian Coal Basin, Part III Structural Geological Maps. Polish Geological Institute.
  • 15. Burchart-Korol, D., 2010. Environment evaluation of iron and steel production technologies based on LCA (in Polish with English summary). Prace Naukowe Głównego Instytutu Górnictwa, Górnictwo i Środowisko, 3: 5-13.
  • 16. Cabała, J., 1996. Concentrations of trace elements in Zn-Pb ores and possibilities of their transfer to waste deposits (in Polish with English summary). Prace Naukowe Głównego Instytutu Górnictwa, seria Konferencje, 13: 17-32.
  • 17. Cabała, J., 2009. Heavy metals in ground soil environment of the Olkusz area of Zn-Pb ore exploitation (in Polish with English summary). Wydawnictwo Uniwersytetu Śląskiego, Katowice.
  • 18. Cabała, J., Teper, L., 2007. Metalliferous constituents of rhizosphere soils contaminated by Zn-Pb mining in southern Poland. Water, Air and Soil Pollution, 178: 351-362.
  • 19. Cappuyns, V., Swennen, R., Vandamme, A., Niclaes M., 2005. Environmental impact of the former Pb-Zn mining and smelting in East Belgium. Journal of Geochemical Exploration, 88: 6-9.
  • 20. Chłopecka, A., Bacon, J.R., Wilson, J., Kay, J., 1996. Forms of cadmium , lead and zinc in contaminated soils from southwest Poland. Journal of Environmental Quality, 25: 69.
  • 21. Cui, Y.J., Zhu, Y.G., Zhai, R.H., Chen, D.Y., Huang, Y.Z., Qiu, Y., Liang, J.Z., 2004. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environment International, 30: 785-791.
  • 22. Degenhardt, O., 1870. Der Oberschlesian-Polnische-Bergdistrict mit Hinweglassung des Diluviums. Karte von Oberschlesien 1:100000. Verlag der Landkarten Handlung von J.H. Neumann, Berlin.
  • 23. Deonarine, A., Kolker, A., Doughten, M.W., 2015. Trace elements in coal ash. U.S. Geological Survey Fact Sheet 2015-3037: 1-6.
  • 24. De Volder, P.S., Brown, S.L., Hesterberg, D., Pandya, K., 2003. Metal bioavailability and speciation in a wetland tailings repository amended with biosolids compost, wood ash, and sulfate. Journal of Environmental Quality, 32: 851-864.
  • 25. De Vos, W., Tarvainen, T. (eds.), 2006. Geochemical Atlas of Europe. Part 2, Geological Survey of Finland, Espoo.
  • 26. Diehl, S.F., Goldhaber, M.B., Hatch, J.R., 2004. Modes of occurrence of mercury and other trace elements in coals from the warrior field, Black Warrior Basin, Northwestern Alabama. International Journal of Coal Geology, 59: 193-208.
  • 27. Dombek, V., Gembalová, L., Matýsek, D., Drobek, L., Bzowski, Z., Ženatý, L., Seibert, R., 2015. Impact of selected post-mining and metallurgical dumps on air pollution on sites in the Czech Republic and Poland. GeoScience Engineering, 61: 24-36.
  • 28. Duriasz, I., Cupiał, A., 2009. Prognoza oddziaływania na środowisko dla zmiany studium uwarunkowań i kierunków zagospodarowania przestrzennego miasta Świętochłowice (in Polish), https://www.swietochlowice.pl/bip/gpn/zal7.pdf (date of last access: 27.04.2020).
  • 29. Ekiert, F., 1971. Geology of the zinc and lead ore deposits in the north-eastern margin of the Upper Silesian Coal Basin (in Polish with English summary). Biuletyn Instytutu Geologicznego, 241: 47-56.
  • 30. Everhart, J.L., McNear, D.Jr., Peltier, E, van der Lelie, D., Chaney, R.L, Sparks, D.L., 2006. Assessing nickel bioavailability in smelter-contaminated soils. Science of the Total Environment, 367: 732-744.
  • 31. Filippelli, G.M, Laidlaw, M.A.S., 2010. The elephant in the playground: Confronting lead-contaminated soils as an important source of lead burdens to urban populations. Perspectives in Biology and Medicine, 53: 31-45.
  • 32. Filippelli, G.M, Morrison, D., Cicchella, D., 2012. Urban geochemistry and human health. Elements, 8: 439-444.
  • 33. Fernandez-Turiel, J.L., Aceńolaza, P., Medina, M.E., Llorens, J.F., Sardi, F., 2001. Assessment of a smelter impact area using surface soils and plants. Environmental Geochemistry and Health, 23: 65-78.
  • 34. Friesl-Hanl, W., Platzer, K., Horak, O., Gerzabek, M.H., 2009. Immobilising of Cd, Pb, and Zn contaminated arable soils close to a former Pb/Zn smelter: a field study in Austria over 5 years. Environmental Geochemistry and Health, 31: 581-594.
  • 35. Fuge, R., Pearce, F.M., Pearce, N.J.G., Perkins, W.T., 1993. Geochemistry of Cd in the secondary environment near abandoned metalliferous mines, Wales. Applied Geochemistry, Supplement, 2: 29-35.
  • 36. Gade, D., 2015. Mercury Emissions from Coal-Fired Powerplants. Environmental Management & Risk Assessment (PH 560). Paper 4, https://pdfs.semanticscholar.org/9294/67546a642c57592f97ceb9 49dc93b9160cf7.pdf.
  • 37. Gałkiewicz, T., Śliwiński, S., 1985. Geological characteristics of the Silesian-Cracovian lead-zinc ore deposits (in Polish with English summary). Annales Societatis Geologorum Poloniae, 53: 63-90.
  • 38. Gäbler, H.E., Schneider, J., 2000. Assessment of heavy-metal contamination of floodplain soils due to mining and mineral processing in the Harz Mountains, Germany. Environmental Geology, 39: 774-782.
  • 39. Górecka, E., 1993. Geological setting of the Silesian-Cracow Zn-Pb deposits. Geological Quarterly, 37 (2): 127-146.
  • 40. Górecka, E., 1996. Mineral sequence development in the Zn-Pb deposits of the Silesian-Cracow area, Poland. Prace Państwowego Instytutu Geologicznego, 154: 26-36.
  • 41. Grzechnik, Z., 1978. History of previous exploration and exploitation (in Polish with English summary). Prace Instytutu Geologicznego, 83: 23-41.
  • 42. Guo-Li, Y., Tian-He, S., Peng, H., Jun, L., 2013. Environmental geochemical mapping and multivariate geostatistical analysis of heavy metals in topsoils of a closed steel smelter: Capital Iron & Steel Factory, Beijing, China. Journal of Geochemical Exploration, 130: 15-21.
  • 43. Harańczyk, C., 1962. Ore minerals of Silesia-Cracow zinc and lead deposits (in Polish with English summary). Prace Geologiczne, 8: 1-74.
  • 44. Heijlen, W., Muchez, P., Banks, D.A., Schneider, J., Kucha, H., Keppens, E., 2003. Carbonate-hosted Zn-Pb deposits in Upper Silesia, Poland: origin and evolution of mineralizing fluids and constrains on genetic models. Economic Geology, 98: 911-932.
  • 45. Hławiczka, S., 2008. Mercury in the atmospheric environment (in Polish with English summary). Wyd. Instytutu Podstaw Inżynierii Środowiska PAN, Zabrze.
  • 46. Jablonska, M., Frans, J., Rietmeijer, J., Janeczek, J., 2001. Fine-grained barite in coal fly ash from the Upper Silesian Industrial Region. Environmental Geology, 40: 941-948.
  • 47. Jureczka, J., Dopita, M., Gałka, M., Krieger, W., Kwarciński, J., Martinec P., 2005. Geological Atlas of Coal Deposits of the Polish and Czech Parts of the Upper Silesian Coal Basin. Polish Geological Institute, Warsaw.
  • 48. Kabata-Pendias, A., Mukherjee, A., 2007. Trace Elements from Soil to Human. Springer-Verlag, Berlin Heidelberg.
  • 49. Kachenko, A.G., Singh, B., 2006. Heavy metal contamination in vegetables grown in urban and metal smelter contaminated sites in Austraia. Water, Air and Soil Pollution, 169: 101-123.
  • 50. Kalembkiewicz, J., Sočo, E., 2009. Industrial fly ash as a potential source of molybdenum emission (in Polish with English summary). Ochrona Środowiska i Zasobów Naturalnych, 40: 601-607.
  • 51. Karczewska, A., Szerszen, L., Kabala, C., 1998. Forms of selected heavy metals and their transformation in soils polluted by the emissions from copper smelters. Advanced GeoEcology, 31: 705-712.
  • 52. Kierczak, J., Bril, H., Neel, C., Puziewicz, J., 2010. Pyrometallurgical slags in Upper and Lower Silesia (Poland): from environmental riska to use of slag-based products - a review. Archives of Environmental Protection, 36: 11-126.
  • 53. Klimek, B., Sitarz, A., Choczyński, M., Niklińska, M., 2016. The effects of heavy metals and total petroleum hydrocarbons on soil bacterial activity and functional diversity in the Upper Silesia Industrial Region (Poland). Water, Air and Soil Pollution, 227: 265.
  • 54. Kokowska-Pawłowska, M., 2016. Relationship of the trace elements content with minerals and organic matter of the lithotypes from the coal seam 308 (Orzesze beds) USCB (in Polish with English summary). Systemy Wspomagania w Inżynierii Produkcji, 5: 109-120.
  • 55. Kolker, A., Senior, C.L., Quick, J.C., 2006. Mercury in coal and the impact of coal on mercury emissions from combustion systems. Applied Geochemistry, 21: 1821-1836.
  • 56. Krzak, M., Paulo, A., 2018. Modern trade standards for steel raw materials. Gospodarka Surowcami Mineralnymi - Mineral Resources Management, 34: 25-50.
  • 57. Kucha, H., 2003. Mississippi Valley Type Zn -Pb deposits of Upper Silesia, Poland. In: Europe's Major Base Metal Deposits (eds. J.G. Kelly, C.J. Andrew, J.H. Ashton, M.B. Bolland, G. Earls, L.F. Fuscardi and G. Stanley): 253-271. Irish Association for Economic Geology.
  • 58. Lis, J., Pasieczna, A., 1995. Geochemical Atlas of Upper Silesia (1:200 000). Polish Geological Institute.
  • 59. Lis, J., Pasieczna, A., 2005. Factor analysis for geochemical characteristic of soils in the mining and smelting area (Sławków-Bolesław region). Prace Specjalne Polskiego Towarzystwa Mineralogicznego, 25: 146-149.
  • 60. Loska, K., Wiechuła, D., Korus, I., 2004. Metal contamination of farming soils affected by industry. Environmental International, 30: 159-165.
  • 61. Lu, A., Wang, J., Qin, X., Wang, K., Han, P., Zhang, S., 2012. Multivariate and geostatistical analyses of the spatial disiribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Science of the Total Environment, 425: 66-74.
  • 62. Majorczyk, R., 1986. 125 lat Zakładów Górniczo-Hutniczych Orzeł) Biały (in Polish). Rudy Metale, 31: 462-469.
  • 63. Merrington, G., Alloway, B.J., 1994. The transfer and fate of Cd, Cu and Zn from two historic metalliferous mine sites in the UK. Applied Geochemistry, 9: 677-687.
  • 64. Michalik, J. (ed.), 2003. Program Ochrony Środowiska wraz z Planem Gospodarki Odpadami dla Miasta Chorzów na lata 2004-2007 wraz z prognozą do roku 2011 (in Polish), http://www.bip.chorzow.eu/add_www/file/prog_os.pdf.
  • 65. Mikulski, S.Z., Oszczepalski, S., Sadłowska, K., Chmielewski, A., Małek, R., 2020. Trace element distributions in the Zn-Pb (Mississippi Valley-Type) and Cu-Ag (Kupferschiefer) sediment-hosted deposits in Poland. Minerals, 75; https://doi.org/10.3390/min10010075.
  • 66. Moir, A.M., Thornton, I., 1989. Lead and cadmium in urban allotment garden soils and vegetables in the United Kingdom. Environmental Geochemistry and Health, 11: 113-119.
  • 67. Molenda, D., 1972. Kopalnie rud ołowiu na terenie złóż śląsko-krakowskich od XVI do XVIII wieku (in Polish). Z dziejów postępu technicznego eksploatacji kruszców: 25-31. Wyd. Ossolineum, Wrocław.
  • 68. Müller, G., 1969. Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2: 108-118.
  • 69. Nachtegaal, M., Marcus, M.A., Sonke, J.E., Vangronsveld, J., Livi, K.J.T., van der Lelie, D., Sparks, D.L., 2005. Effects of in situ remediation on the speciation and bioavailability of zinc in a smelter contaminated soil. Geochimica et Cosmochimica Acta, 69: 4649-4664.
  • 70. Nagajyoti, P.C., Lee, K.D., Sreekanth, T.V.M., 2010. Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8: 199-216.
  • 71. Nannoni, F., Protano, G., Riccobono, F., 2011. Uptake and bioaccumulation of heavy elements by two earthworm species from a smelter contaminated area in northern Kosovo. Soil Biology and Biochemistry, 43: 2359-2367.
  • 72. Navarro, M.C., Pérez-Sirvent, C., Martínez-Sánchez, M.J., Vidal, J., Marimón, J., 2006. Lead, cadmium and arsenic bioavailability in the abandoned mine site of Cabezo Rajao (Murcia, SE Spain). Chemosphere, 63: 484-489.
  • 73. Niemierowski, W., 1983. Dwa wieki huty „Zabrze” 1782-1982 (in Polish). Zabrze.
  • 74. Ottesen, R.T., Birke, M., Finne, T.E., Gosar, M., Locutura, J., Reimann, C., Tarvainen, T., the GEMAS Project Team., 2013. Mercury in European agricultural and grazing land soils. Applied Geochemistry, 33: 1-12.
  • 75. Owczarek, J., Syska, A., Caban, E., Szala, M., Szymańska, J., Woźniakowska, A., 2012. Wstępne sprawozdanie z inwentaryzacji obiektów przemysłowych w województwie śląskim (in Polish). Wyd. Śląskiego Centrum Dziedzictwa Kulturowego, Katowice.
  • 76. Pasieczna A. (ed.), 2016. Detailed Geochemical Map of Upper Silesia. Polish Geological Institute, http://www.mapgeochem.pgi.gov.pl/forward.html.
  • 77. Pasieczna, A., Bojakowska, I., Nadłonek, W., 2017. The impact of anthropogenic factors on the occurrence of molybdenum in stream and river sediments of central Upper Silesia (Southern Sources of anthropogenic contamination of soil in the Upper Silesian Agglomeration (southern Poland). Environmental Protection and Natural Resources, 28: 16-26.
  • 78. Pandey, V.C., Abhilash, P.C., Upadhyay, R.N., Tewari, D.D., 2009. Application of fly ash on the growth performance and translocation of toxic heavy metals within Cajanus cajan L.: implication for safe utilization of fly ash for agricultural production. Journal of Hazardous Materials, 166: 255-259.
  • 79. Paulo, A., Strzelska-Smakowska, B., 2000. Rudy metali nieżelaznych i szlachetnych (in Polish). Wydawnictwo AGH, Kraków.
  • 80. Paulson, A.J., 1997. The transport and fate of Fe, Mn, Cu, Zn, Cd, Pb, and SO4 in a groundwater plume and in downstream surface water in the Coeur d'Alene mining district, Idaho, U.S.A. Applied Geochemistry, 12: 447-464.
  • 81. Pelfrêne, A., Waterlot, C., Mazzuca, M., Nisse, C., Bidar, G., Douay, F., 2011. Assessing Cd, Pb, Zn human bioaccessibility in smelter-contaminated agricultural topsoils (northern France). Environmental Geochemistry and Health, 33: 477-493.
  • 82. Piwocki, M., Przeniosło, S., 2004. Mineral raw materials and commodities of Poland. Przegląd Geologiczny, 52: 744-752.
  • 83. PN-ISO 10390, 1997. Polska Norma PN-ISO 10390, Polski Komitet Normalizacyjny. Jakość gleby. Oznaczanie pH.
  • 84. Reimann, C., de Caritat, P., 1998. Chemical elements in the environment - factsheets for the geochemist end environmental scientist. Springer, Berlin Heidelberg.
  • 85. Reimann, C., de Caritat, P., 2000. Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environmental Science & Technology, 34: 5084-5091.
  • 86. Reimann, C., de Caritat, P., 2017. Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Science of the Total Environment, 578: 633-648.
  • 87. Reimann, C., Filzmoser, P., Garret, R.G., 2005. Background and threshold: critical comparison of methods of determination. Science of the Total Environment, 346: 1-16.
  • 88. Rice, K.M., Walker, E.M., Wu, M., Gillette, Ch., Blough, E.R., 2014. Environmental mercury and its toxic effects. Journal of Preventive Medicine & Public Health, 47: 74-83.
  • 89. Rożek, D., Nadłonek, W., Cabała, J., 2015. Forms of heavy metals (Zn, Pb, Cd) occurring in rhizospheres from the areas of former and contemporary Zn-Pb ore mining. Mining Science, 22 (Special Issue 2): 125-138.
  • 90. Różkowska, A., Ptak, B., 1995. Bar w węglach kamiennych Górnego Śląska (in Polish). Przegląd Geologiczny, 43: 223-226.
  • 91. Sass-Gustkiewicz, M., 1997. Revised and completed paragenetic order of minerals in the Pomorzany lead-zinc deposit, Upper Silesian district, Poland. Mineralogia Polonica, 28: 67-80.
  • 92. Smedley, P.L., Kinniburgh, D.G., 2017. Molybdenum in natural waters: a review of occurrence, distributions and controls. Applied Geochemistry, 84: 387-432.
  • 93. Smieja-Król, B., Bauerek, A. 2015. Controls on trace-element concentrations in the pore waters of two Sphagnum-dominated mires in southern Poland that are heavily polluted by atmospheric deposition. Journal of Geochemical Exploration, 151: 57-65.
  • 94. Sordoń-Kulibaba, B., 2010. Program ochrony środowiska dla miasta Świętochłowice (in Polish), https://www.swietochlowice.pl/files/PDF/programy_ekologiczne/POS_aktualizacja.pdf.
  • 95. Sulimierski, F., Chlebowski B., Walewski W. (eds.), 1880-1914. Słownik geograficzny Królestwa Polskiego i innych krajów słowiańskich (in Polish). Wyd. Kasa im. Józefa Mianowskiego, Warszawa.
  • 96. Sutherland, R.A., Tolosa, C.A, Tack, F.M.G., Verloo, M.G., 2000. Characterization of selected element concentrations and enrichment ratios in background and anthropogenically impacted roadside areas. Archives of Environmental Contamination and Toxicology, 38: 428-438.
  • 97. Swennen, R., Van Keer, I., De Vos, W., 1994. Heavy metal contamination in overbank sediments of the Geul river (East Belgium): Its relation to former Pb-Zn mining activities. Environmental Geology, 24: 12-21.
  • 98. Szczech, B., 2003. Siedemnastowieczny transumpt Fundacji Łagiewnickiej dla kościoła mariackiego w Bytomiu (1495) (in Polish), http://www.sbc.org.pl/Content/129556/4_Posortowane_013.pdf.
  • 99. Szczepańska, J., Twardowska, I., 1999. Distribution and environmental impact of coal-mining wastes in Upper Silesia, Poland. Environmental Geology, 38: 249-258.
  • 100. Szpadt, R. (ed.), 1994. Zanieczyszczenie środowiska rtęcią i jej związkami (in Polish). Biblioteka Monitoringu Środowiska, Warszawa.
  • 101. Szulc, W., 2013. Transformacja polskiego hutnictwa żelaza do gospodarki wolnorynkowej (in Polish). Wydawnictwo Instytutu Metalurgii Żelaza, Gliwice.
  • 102. Szuwarzyński, M., 1996. Ore bodies in the Silesian-Cracow Zn-Pb ore district, Poland. Prace Państwowego Instytutu Geologicznego, 154: 9-24.
  • 103. Taylor, M.P., Mackay, A.K, Hudson-Edwards, K.A, Holz, E., 2010. Soil Cd, Cu, Pb and Zn contaminant, around Isa City, Queensland, Australia: potential sources and risks to human health. Applied Geochemistry, 25: 841-855.
  • 104. Tyszka, R., Kierczak, J., Pietranik, A., Ettler, V., Mihaljevič, M., 2014. Extensive weathering of zinc smelting slag in a heap in Upper Silesia (Poland): potential environmental risks posed by mechanical disturbance of slag deposits. Applied Geochemistry, 40: 70-81.
  • 105. Viets, J.G., Leach, D.L., Lichte, F.E., Hopkins, R.T., Gent, C.A., Powell, J.W., 1996. Paragenetic and minor- and trace-element studies of Mississippi Valley type ore deposits of the Silesian-Cracow district, Poland. Prace Państwowego Instytutu Geologicznego, 154: 51-71.
  • 106. Walerjański, D., 2006. Zabrze krok po kroku (in Polish). Zabrze.
  • 107. Wong, C.S.C, Li, X., Thornton, I., 2006. Urban environmental geochemistry of trace metals. Environmental Pollution, 142: 1-16.
  • 108. Wuana, R.A., Okieimen, F.E., 2011. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. International Scholarly Research Network ISRN Ecology.
  • 109. Yudovich, Y.E., Ketris, M.P., 2005. Mercury in coal: a review - Part 1. Geochemistry. International Journal of Coal Geology, 62: 107-134.
  • 110. Zapotoczna-Sytek, G., Łaskawiec, K., Gembarowski, P., Małolepszy, J., Szymczak, J., 2013. Popioły lotne nowej generacji do produkcji autoklawizowanego betonu komórkowego (in Polish). Instytut Ceramiki i Materiałów Budowlanych, Warszawa.
  • 111. Zhang, J., Liu, C.L., 2002. Riverine composition and estuarine geochemistry of particulate metals in China-weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54: 1051-1070.
  • 112. Ziętek-Kruszewska, A., 1978. Mineralogical characteristics of the Triassic sulphides (in Polish with English summary). Prace Instytutu Geologicznego, 83: 211-215.
  • 113. Żabiński, W., 1960. The mineralogical characteristic of the oxidation zone of Silesia-Cracow zinc and lead deposits (in Polish with English summary). Prace Geologiczne, 1: 1-73.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62127f46-9034-4698-9f2f-db880a8dc64d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.