Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper proposes an enhancement approach to improve the accuracy of global Digital Elevation Models (GDEMs) in Egypt. The proposed approach is an empirical one that depends on subtracting the heights error from the original DEM. The research includes the evaluation and enhancement of SRTM-1 (SRTM v4.1), ASTER GDEM v2, and AW3D30 v2 GDEMs, in Egypt, using 980 well distributed GPS/levelling points, that cover the entire country. The GPS/levelling points are divided into 500 control and 390 check points. The results show that the root mean square error (RMSE) in the SRTM, ASTER and AW3D30 are 3.99 m, 8.81 m, and 2.98 m respectively. For enhancing purposes, two different approaches are used: a linear regression analysis approach, and the proposed empirical surface subtraction approach. The results of the linear regression analysis approach show that the accuracies are improved by 3%, 16%, and 3% for SRTM, ASTER and AW3D30 respectively. However, the accuracies are improved by 5%, 23%, and 16% for SRTM, ASTER and AW3D30 respectively when the proposed approach is followed. After using the proposed approach, the obtained accuracy of the enhanced DEM reached 2.5 m.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
57--77
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Drainage Research Institute, National Water Research Center, Cairo, Egypt
autor
- Survey Research Institute, National Water Research Center, Cairo, Egypt
Bibliografia
- [1] Altunel A.O.: Suitability of open access elevation model for micro-scale watershed planning. Environmental Monitoring and Assessment, vol. 190(9), 2018, 512. https://doi.org/10.1007/s10661-018-6890-1.
- [2] Yoeli P.: Digital Terrain Models and their Cartographic and Cartometric Utilisation. The Cartographic Journal, vol. 20(1), 1983, pp. 17–22. https://doi.org/10.1179/caj.1983.20.1.17.
- [3] van Zyl J.: The Shuttle Radar Topography Mission (SRTM): A breakthrough in remote sensing of topography. Acta Astronautica, vol. 48(5), 2001, pp. 559–565. https://doi.org/10.1016/S0094-5765(01)00020-0.
- [4] U.S. Geology Survey: Shuttle Radar Topography Mission – New Products in 2005. Fact Sheet 2005–3068, May 2005. https://pubs.usgs.gov/fs/2005/3068/report.pdf [access: 15.04.2021].
- [5] Farr T.G., Rosen P.A., Caro E., Crippen R., Duren R. et al.: The shuttle radar topography mission. Reviews of Geophysics, vol. 45(2), 2007, RG2004. https://doi.org/10.1029/2005RG000183.
- [6] Rexer M., Hirt C.: Comparison of free high-resolution digital elevation data sets (ASTER GDEM2, SRTM v2.1/v4.1) and validation against accurate heights from the Australian National Gravity Database. Australian Journal of Earth Sciences, vol. 61(2), 2014, pp. 213–226. http://dx.doi.org/10.1080/08120099.2014.884983.
- [7] Pipaud I., Loibl D., Lehmkuhl F.: Evaluation of TanDEM-X elevation data for geomorphological mapping and interpretation in high mountain environments – A case study from SE Tibet, China. Geomorphology, vol. 246, 2015, pp. 232–254. https://doi.org/10.1016/j.geomorph.2015.06.025.
- [8] National Aeronautics and Space Administration (NASA) and Jet Propulsion Laboratory (JPL): Shuttle Radar Topography Mission: The Mission to Map the World. 7 April 2022. https://www2.jpl.nasa.gov/srtm/statistics.html [access: 15.04.2021].
- [9] Tachikawa T., Kaku M., Iwasaki A., Gesch D.B., Oimoen M.J. et al.: ASTER Global Digital Elevation Model Version 2 – summary of validation results. NASA, 2011.
- [10] Earth Observation Research Center (EORC) and Japan Aerospace Exploration Agency (JAXA): ALOS Global Digital Surface Model DSM): ALOS World 3D-30m (AW3D30). Version 2.1. April 2018. https://www.eorc.jaxa.jp/ALOS/en/aw3d30/aw3d30v21_format_e.pdf [access: 15.04.2021].
- [11] Takaku J., Tadono T., Tsutsui K.: Generation of High Resolution Global DSM from ALOS PRISM. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XL-4, 2014, pp. 243–248. https://doi.org/10.5194/isprsarchives-XL-4-243-2014.
- [12] Tadono T., Takaku J., Tsutsui K., Oda F., Nagai H.: Status of “ALOS World 3D (AW3D)” global DSM generation. [in:] 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, 2015, pp. 3822–3825. https://doi.org/10.1109/IGARSS.2015.7326657.
- [13] Takaku J., Tadono T.: Quality updates of ‘AW3D’ global DSM generated from ALOS PRISM. [in:] 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, 2017, pp. 5666–5669. https://doi.org/10.1109/IGARSS.2017.8128293.
- [14] Rodríguez E., Morris C.S., Belz J.E., Chapin E.C., Martin J.M., Daffer W., Hensley S.: An assessment of the SRTM topographic products. Jet Propulsion Laboratory D-31639, JPL, NASA, 2005.
- [15] Rodríguez E., Morris C.S., Belz J.E.: A global assessment of the SRTM performance. Photogrammetric Engineering and Remote Sensing, vol. 72(3), 2006, pp. 249–260. https://doi.org/10.14358/PERS.72.3.249.
- [16] Gorokhovich Y., Voustianiouk A.: Accuracy assessment of the processed SRTMbased elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote Sensing of Environment, vol. 104(4), 2006, pp. 409–415. https://doi.org/10.1016%2Fj.rse.2006.05.012.
- [17] Mouratidis A., Briole P., Katsambalos K.: SRTM 3″ DEM (versions 1, 2, 3, 4) validation by means of extensive kinematic GPS measurements: a case study from North Greece. International Journal of Remote Sensing, vol. 31(23), 2010, pp. 6205–6222. https://doi.org/10.1080/01431160903401403.
- [18] Hirt Ch., Filmer M.S., Featherstone W.E.: Comparison and validation of the recent freely available ASTER-GDEM ver1, SRTM ver4.1 and GEODATA DEM-9s ver3 digital elevation models over Australia. Australian Journal of Earth Sciences, vol. 57(3), 2010, pp. 337–347. https://doi.org/10.1080/08120091003677553.
- [19] Li P., Shi C., Li Z., Muller J.-P., Drummond J., Li X., Li T., Li Y., Liu J.: Evaluation of ASTER GDEM Ver2 Using GPS Measurements and SRTM Ver4.1 in China. ISPRS Annals of the Photogrammetry, Remote Sensing, and Spatial Information Sciences, vol. I(4), 2012, pp. 181–186. https://doi.org/10.5194/isprsannals-I-4-181-2012.
- [20] Yao J., Chao-lu Y., Ping F.: Evaluation of the Accuracy of SRTM3 and ASTER GDEM in the Tibetan Plateau Mountain Ranges. E3S Web of Conferences, vol. 206, 2020, 01027. https://doi.org/10.1051/e3sconf/202020601027.
- [21] Takaku J., Tadono T., Tsutsui K., Ichikawa M.: Validation of ‘AW3D’ Global DSM Generated from ALOS PRISM. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. III-4, 2016, pp. 25–31. https://doi.org/10.5194/isprsannals-III-4-25-2016.
- [22] Santillan J.R., Makinano-Santillan M.: Vertical Accuracy Assessment of 30-M Resolution ALOS, ASTER, and SRTM Global DEMs over Northeastern Mindanao, Philippines. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLI-B4, 2016, pp. 149–156. https://doi.org/10.5194/isprs-archives-XLI-B4-149-2016.
- [23] Takaku J., Tadono T., Doutsu M., Ohgushi F., Kai H.: Updates of ‘AW3D30’ALOS Global Digital Surface Model with Other Open Access Datasets. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLIII-B4-2020, 2020, pp. 183–189. https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-183-2020.
- [24] Arefi H., Reinartz P.: Accuracy enhancement of ASTER global digital elevation models using ICESat data. Remote Sensing, vol. 3(7), 2011, pp. 1323–1343. https://doi.org/10.3390/rs3071323.
- [25] Ebaid H.: Accuracy enhancement of SRTM and ASTER DEMs using weight estimation regression model. International Journal of Research in Engineering and Technology, vol. 3(8), 2014, pp. 371–377. https://doi.org/10.15623/ijret.2014.0308057.
- [26] Rabah M., El-Hattab A., Abdallah M.: Assessment of the most recent satellite based digital elevation models of Egypt. NRIAG Journal of Astronomy and Geophysics, vol. 6(2), 2017, pp. 326–335. https://doi.org/10.1016/j.nrjag.2017.10.006.
- [27] Egypt. [in:] Encyclopedia of the Nations. https://www.nationsencyclopedia.com/Africa/Egypt.html [access: 27.04.2021].
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-620cc9c2-20f2-4773-8c01-500735b54066