PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Reduction of Contaminants from Municipal Wastewater of Salori Sewage Treatment Plant Using Electrochemical Membrane Bioreactor and Bioelectricity Generation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Membrane bioreactor (MBR) is stable and rising wastewater treatment reactor though membrane fouling and energy expenditure remain operational impediments and challenges for the wider deployment of the MBR technology. The majority of municipal wastewater contains low quantities of suspended, dissolved inorganic and organic particles. Proteins, carbohydrates, synthetic detergents, lignin, soaps, lipids and their decomposition products, along with many natural and synthetic organic chemicals from industrial processes, are also examples of impurities present in water. In addition, municipal wastewater contains a variety of inorganic chemicals, such as heavy metals, which might have phytotoxic and health consequences, limiting its usage in agriculture. In this study, an electrochemical membrane bioreactor (EMBR) has been developed to reduce several impurities from real municipal wastewater; moreover bioelectricity was also generated simultaneously. The maximum removal of biological oxygen demand (BOD), chemical oxygen demand (COD) and total dissolved solid (TDS) were 35.57%, 31.55%, and 32.84 %, respectively, after a 5-day experimental run.
Twórcy
  • Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
  • Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
autor
  • IILM College of Engineering & Technology, IILM Academy of Higher Learning, Greater Noida, Uttar Pradesh, India
autor
  • Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
Bibliografia
  • 1. McCarty P.L., Bae J., Kim J. 2011. Domestic wastewater treatment as a net energy producer - Can this be achieved? Environ. Sci. Technol., 45(17), 7100–7106.
  • 2. Vorosmarty C.J., McIntyre P.B., Gessner M.O., Dudgeon D., Prusevich A., Green P. 2010 Global threats to human water security and river biodiversity. Nature, 467, 555–561.
  • 3. Grant S.B., Saphores J.D., Feldman D.L., Hamilton A.J., Fletcher T.D., Cook P.L.M. 2012 Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science (Washington), 337(6095), 681–686.
  • 4. Mo W., Zhang Q. 2013. Energy-nutrients-water nexus: integrated resource recovery in municipal wastewater treatment plants. J Environ Mgmt., 127, 255–267.
  • 5. Baker R.W. 2010. Research needs in the membrane separation industry: looking back, looking forward. Jour. of Mem. Sci., 362(1), 134–136.
  • 6. Logan B.E., Rabaey K. 2012 Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science, 337(6095), 686–690.
  • 7. Shannon M.A., Bohn P.W., Elimelech M., Georgiadis J.G., Marinas B.J., Mayes A.M. 2008. Science and technology for water purifi cation in the coming decades. Nature, 452, 301–310.
  • 8. Meng F., Chae S.R., Drews A., Kraume M., Shin H.S., Yang F. 2009 Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Res., 43(6), 1489–1512.
  • 9. Abegglen C., Ospelt M., Siegrist H. 2008 Biological nutrient removal in a small-scale MBR treating household wastewater. Water Res., 42(1), 338–346.
  • 10. Abels C., Carstensen F., Wessling M. 2013. Membrane processes in biorefinery applications. J Membr Sci., 444, 285–317.
  • 11. Agana B.A., Reeve D., Orbell J. 2012. The influence of an applied electric field during ceramic ultrafiltration of post-electrodeposition rinse wastewater. Water Res., 46(11), 3574–3584.
  • 12. Ahmed Z., Lim B.R., Cho J., Song K.G., Kim K.P., Ahn K.H. 2008. Biological nitrogen and phosphorus removal and changes inmicrobial community structure in a membrane bioreactor: effect of different carbon sources. Water Res., 2008, 42(1), 198–210.
  • 13. Akamatsu K., Lu W., Sugawara T., Nakao S. 2010. Development of a novel fouling suppression system in membrane bioreactors using an intermittent electric field. Water Res., 44(3), 825–830.
  • 14. Akamatsu K., Yoshida Y., Suzaki T., Sakai Y., Nagamoto H., Nakao S.2012. Development of a membrane–carbon cloth assembly for submerged membrane bioreactors to apply an intermittent electric field for fouling suppression. Environ. Sci. Technol., 88, 202–207.
  • 15. Al-Malack M.H., Anderson G.K. 1996. Coagulation crossflow microfiltration of domestic wastewater. J Membr. Sci., 112(1), 59–70.
  • 16. Al-Malack M.H., Anderson G.K., Almasi A. 1998. Treatment of anoxic pond effluent using crossflow microfiltration. Water Res., 32(12), 3738–3746.
  • 17. Ali M.B., Rakib M., Laborie S., Viers P., Durand G. 2004 Coupling of bipolar membrane electrodialysis and ammonia stripping for direct treatment of wastewaters containing ammonium nitrate. J. Membr. Sci., 244(1), 89–96.
  • 18. Alibardi L., Cossu R., Saleem M., Spagni A. 2014. Development and permeability of a dynamic membrane for anaerobic wastewater treatment. Bioresour. Technol., 161, 236–244.
  • 19. Asatekin A., Menniti A., Kang S., Elimelech M., Morgenroth E.,Mayes A.M.2006. Antifouling nanofiltration membranes for membrane bioreactors from self-assembling graft copolymers. J. Membr. Sci., 285(1–2), 81–89.
  • 20. Ma J., Wang Z., Mao B., Junyao Z., Wu Z. 2015. Electrochemical Membrane Bioreactors for Sustainable Wastewater Treatment: Principles and Challenges, Curr. Env. Engg., 2(1), 38–49.
  • 21. Wang Y.K., Sheng G.P., Shi BJ.., Li W.W., Yu H.Q. 2013. A Novel Electrochemical Membrane Bioreactor as a Potential Net Energy Producer for Sustainable Wastewater Treatment. Sci. Rep., 3, 1864.
  • 22. Pierangeli G.M.F., Ragio R.A., Benassi R.F., Gregoracci G.B., Subtil E.L.2021.Pollutant removal, electricity generation and microbial community in an electrochemical membrane bioreactor during cotreatment of sewage and landfill leachate. J. Env. Chem. Engg., 9(5), 106205
  • 23. Matsubara M.E., Karin H., Colin H., Joanne R., Eduardo L.S., Lúcia H.G.C. 2020. Amoxicillin removal by pre-denitrification membrane bioreactor (A/O-MBR): Performance evaluation, degradation by-products, and antibiotic resistant bacteria. Ecotoxicol Environ Saf., 192, 110258.
  • 24. Ragio R.A., Rodrigues P.S., Subtil E.L.2021. Startup of a membrane bio-electrochemical reactor: technology for wastewater treatment and energy generation, Braz. Jour of Chem Engg, 38(3), 461–470.
  • 25. Gabrielle M.F., Pierangelia R.A.R., Roseli F.B., Gustavo B.G., Eduardo L.S. 2022. Pollutant removal, electricity generation and microbial community in an electrochemical membrane bioreactor during co-treatment of sewage and landfill leachate. Jour. of Env. Chem. Engg., 9(5), 106205.
  • 26. Guowang Z., Yuhong Z., Guoqiang Z., Lian L., Xiankai W., Huixiang S.2015. Assessment of a novel overflow-type electrochemical membrane bioreactor (EMBR) for wastewater treatment, energy recovery and membrane fouling mitigation. Biores Tech, 196, 648–655.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6208592e-4c43-40e7-be80-d3fe599a89c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.