PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nash-lambda algorithm with applications in safety and reliability

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a new algorithm, named as Nash-lambda algorithm by merging Nash equilibrium solution and the lambda algorithm, is proposed. The lambda algorithm, a new global optimization algorithm, is created by imitating ancient Chinese human body system model, which has already demonstrated its simplicity in searching scheme, codes and efficiency in computation comparing to the genetic algorithm. The noncorporative game environments determine the optimization problems which are different from those of the traditional safety and reliability optimizations because of the engagement of the Nash equilibrium for seeking the best strategy. The lambda algorithm serves the searching the Nash equilibrium solution efficiently. In other worlds, the Nash-lambda algorithm is just developed to address the optimization problems of the multiple objective functions representing non-corporative players’ interests.
Rocznik
Strony
51--58
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • University of Cape Town, Cape Town, South Africa
autor
  • University of Cape Town, Cape Town, South Africa
Bibliografia
  • [1] Liu, B. D. (1998). Stackelberg-Nash equilibrium for multilevel programming with multiple followers using genetic algorithms. Computers Math. Applic. 36, 7, 79-89.
  • [2] Ben-Gal, I. (2007). Bayesian Networks, in Ruggeri F., Faltin F. & Kenett R. Encyclopedia of Statistics in Quality & Reliability, Wiley & Sons.
  • [3] Buntine, W. (1994). Operations for learning with graphical models. Journal of Artificial Intelligence Research 2.
  • [4] Cui, Y. H., Guo, R. & Guo, D. (2009). A Naïve five-element string algorithm. Journal of Software 4, 9, 925-934
  • [5] Cui, Y. H, Guo, R., Dunne, T. & Guo, D. (2010). Lambda algorithm. Journal of Uncertain Systems 4, 1, 22-23.
  • [6] Cui, Y., Guo, R., Savsani, V., Rao, R. & Vakharia, D. (2008). Harmony element algorithm- A naïve initial searching Range. Proc. of the International conference on ‘Advances in mechanical engineering’, 479-484.
  • [7] Heymann, P. B. (2003). Dealing with Terrorism after September 11, 2001: An Overview. In: Howitt, A., Pangi, R. (eds.) Preparing for Domestic Terrorism. MIT Press, Cambridge, MA, 57-72.
  • [8] http://en.wikipedia.org/wiki/Bayesian_network
  • [9] http://en.wikipedia.org/wiki/Bilevel_program
  • [10] http://en.wikipedia.org/wiki/Game_theory
  • [11] http://en.wikipedia.org/wiki/Multilevel_program ming
  • [12] http://en.wikipedia.org/wiki/Nash_equilibrim
  • [13] http://en.wikipedia.org/wiki/Stackelberg_competi tion
  • [14] Jackson, C. & Pascual, R. (2008). Optimal maintenance service contract negotiation with aging equipments. European Journal of Operational Research 189, 387-398
  • [15] Kaplan, E.H., Mintz, A., Mishal, S. & Samban, C. (2005). What Happened to Suicide Bombings in Israel? Insights from a Terror Stock Model. Studies in Conflict & Terrorism 28, 225-235.
  • [16] Keohane, N.O, & Zeckhauser, R. (2003). The Ecology of Terror Defense. Journal of Risk and Uncertainty 26, 201-229.
  • [17] Kjrulff, U. (1992). A computational scheme for reasoning in dynamic probabilistic networks, Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence, 121-129, Morgan Kaufmann, San Francisco.
  • [18] Manbachi, M., Mahdloo, F. & Haghifam, M-R. (2010). A New Solution for Maintenance Scheduling in Deregulated Environment based on Lost Opportunity Cost of Market Participation and Reliability. Proc. of Modern Electric Power Systems 2010, Wroclaw, Poland, MEPS'10 -paper P4.
  • [19] Masatoshi, S. & Ichiro, N. (2009). Cooperative and Noncooperative Multi-Level Programming. Springer.Dordrecht - Heidelberg - London - New York
  • [20] Sandler, T. & Hartley, K. (2001). Economics of alliances: The lessons for collective action. Journal of Economic Literature 34, 869-896.
  • [21] Sefrioui, M. & Perlaux, J. (2000). Nash genetic algorithms: examples and applications. Proc. of the 2000 Congress on Evolutionary Computation 1, 509-516.
  • [22] Simaan, M., & Cruz, J. B. (1973). A Stackelberg solution for games with many players. IEEE transactions on Automatic Control AC-18, 322324.
  • [23] Simaan, M. & Cruz, J. B. (1973). On the Stackelberg strategy in nonzero-sum games. Journal of Optimization Theory and App. 11, 533-555.
  • [24] Spata, M. O. & Rinaudo, S. (2010). Merging Nash Equilibrium Solution with Genetic Algorithm: The Game Genetic Algorithm. Journal of Convergence Information Technology 5, 9, November 2010, 9-15.
  • [25] Varian, H. R. (1994). Sequential provision of public goods. Journal of Public Economics 53, 165-186.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62074c22-48f3-4fa2-879a-49ad512cf69d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.