PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Improving the quality of the fetal state assessment with epsilon-insensitive learning methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recording and analysis of fetal heart rate (FHR) signal is nowadays the primary method for the biophysical assessment of the fetal state. Since the correct interpretation of crucial FHR characteristics is difficult, methods of automated quantitative signal evaluation are still the subject of the research studies. In the following paper we investigated the possibility of improvement of the fetal state evaluation on the basis of the epsilon-insensitive learning (eIL). We examined two eIL procedures integrated with fuzzy clustering algorithms as well as different methods of logical interpretation of the fuzzy conditional statements. The quality of the FHR signal classification was evaluated using the data collected with the computerized fetal surveillance system. The learning performance was measured with the number of correct classification (CC) and overall quality index (QI) defined as a geometric mean of sensitivity and specificity. The obtained results (CC = 88 % and QI = 87 %) show a high efficiency of the fetal state assessment using the epsilon-insensitive learning based methods.
Rocznik
Tom
Strony
19--26
Opis fizyczny
Bibliogr. 19 poz., tab.
Twórcy
  • Silesian University of Technology, Institute of Electronics, Akademicka Str. 16, 44-100 Gliwice, Poland
autor
  • Institute of Medical Technology and Equipment, Roosevelt Str. 118, 41-800 Zabrze, Poland
autor
  • Institute of Medical Technology and Equipment, Roosevelt Str. 118, 41-800 Zabrze, Poland
autor
  • Silesian University of Technology, Institute of Electronics, Akademicka Str. 16, 44-100 Gliwice, Poland
Bibliografia
  • [1] BERNARDES J., COSTA-PEREIRA A., DE CAMPOS D. A., VAN GEIJN H. P., PEREIRA-LEITE L., Evaluation of interobserver agreement of cardiotocograms, International Journal of Gynecology & Obstetrics, 1997, Vol. 57, pp. 33–37.
  • [2] BEZDEK J. C., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1982.
  • [3] CZABAŃSKI R., JEŻEWSKI M.,WRÓBEL J., HOROBA K., JEŻEWSKI J., A neuro-fuzzy approach to the classification of fetal cardiotocograms, Proc. 14th International Conference NBC2008, Latvia, 2008, Vol. 20, pp. 446-449.
  • [4] CZABAŃSKI R., JEŻEWSKI M., WRÓBEL J., JEŻEWSKI J., HOROBA K., Predicting the risk of low-fetal birth weight from cardiotocographic signals using ANBLIR system with deterministic annealing and "-insensitive learning, IEEE Trans. on Information Technology in Biomedicine, 2010, Vol. 14, pp. 1062-1074.
  • [5] CZABAŃSKI R., JEŻEWSKI J., MATONIA A. JEŻEWSKI M., Computerized Analysis of Fetal Heart Rate Signals as the Predictor of Neonatal Acidemia, Expert Systems with Applications, 2012, Vol. 39, pp. 11846-11860.
  • [6] CZOGAŁA E., ŁĘSKI J., Fuzzy and Neuro-Fuzzy Intelligent Systems, Heidelberg: Physica-Verlag, Springer-Verlag Comp., 2000.
  • [7] FODOR J. C., On fuzzy implication operators, Fuzzy sets and Systems, 1991, Vol. 42, pp. 293-300.
  • [8] GEORGOULAS G., STYLIOS C., GROUMPOS P., Predicting the risk of metabolic acidosis for newborns based on fetal heart rate signal classification using support vector machines, IEEE Trans. on Biomedical Engineering, 2006, Vol. 53, pp. 875-884.
  • [9] HAMMACHER K., The monitoring of the human fetal heart, International Journal of Obstetrics & Gynecology, 1972, Vol. 10, pp. 173–175.
  • [10] HUANG Y.-P., HUANG Y.-H., SANDNES F.-E., A fuzzy inference method-based fetal distress monitoring system, Proc. IEEE ISIE’06, Canada, 2006, Vol. 1, pp. 55-60.
  • [11] KERSTEN P. R., Fuzzy Order Statistics and Their Application to Fuzzy Clustering, IEEE Trans. Fuzzy Systems, 1999, Vol. 7, pp. 708-712.
  • [12] KRUPA N., MA M., ZAHEDI E., AHMED S., HASSAN F., Antepartum fetal heart rate feature extraction and classification using empirical mode decomposition and support vector machine, BioMedical Engineering OnLine, 2011, Vol. 10. pp. 1-15.
  • [13] JEŻEWSKI M., CZABAŃSKI R., WRÓBEL J., HOROBA K., Analysis of extracted cardiotocographic signal features to improve automated prediction of fetal outcome, Biocybernetics and Biomedical Engineering, 2010, Vol. 30, pp. 39-47.
  • [14] ŁĘSKI J., "ε- insensitive learning techniques for approximate reasoning systems (invited paper). Int. J. of Computational Cognition, 2003, Vol. 1, pp. 21–77.
  • [15] ŁĘSKI J., HENZEL N., A neuro-fuzzy system based on logical interpretation of if-then rules, Int. J. Applied Mathematics and Computer Sciences, 2000, Vol. 10, pp. 703–722.
  • [16] MANGASARIAN O. L., MUSICANT D. R., Lagrangian support vector machines, Journal of Machine Learning Research, 2001, Vol. 1, pp. 161-177.
  • [17] ROOTH G., Guidelines for the use of fetal monitoring, International Journal of Obstetrics & Gyneacology, 1987, Vol. 25, pp. 159–167.
  • [18] SIGNORINI M., MAGENES G., CERUTTI S., ARDUINI D., Linear and nonlinear parameters for the analysis of fetal heart rate signal from cardiotocographic recordings, IEEE Trans. on Biomedical Engineering, 2003, Vol. 50, pp. 365–374.
  • [19] VAPNIK V., Statistical Learning Theory. New York: Wiley, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-620466fb-7dae-4232-bb85-a2ff5484fb4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.