PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gold nanoparticles in an enhancement of antimicrobial activity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of antimicrobial photodynamic therapy (aPDT) on Gram-positive bacterium Staphylocccus aureus was studied. Methylene blue (MB) at non-toxic concentration of 31.25µg/ml was used as a photosensitizer. LEDs diodes were used as a light source to study the effect of methylene blue alone and the MB-gold nanoparticle mixture on the viability of S. aureus cells. Biogenic gold nanoparticles (biolAuNPs, 10ppm) and chemically synthesized gold nanoparticles (chemAuNPs, 3ppm) were tested as enhancement agents. In the presence of MB alone as a photosensitizer, the killing effect was about 92% after 30min of irradiation. The aPDT therapy was enhanced by addition of biolAuNPs and chemAuNPs and killing rate of S. aureus was 95-96% after 30min of irradiation. The probable mechanism of enhancement of MB-mediated photodynamic bactericidal efficacy against S. aureus in the presence of gold nanoparticles is discussed leading to the conclusion that colloidal gold increases the accumulation of MB in bacterial cells.
Rocznik
Strony
269--279
Opis fizyczny
Bibliogr. 60 poz., rys., tab., wykr., wz.
Twórcy
  • Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology
  • Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology
Bibliografia
  • ABDEL-RAOUFA, N., AL-ENAZIB, N.M., IBRAHEEMA, I.B.M., 2017, Green Biosynthesis of Gold Nanoparticles Using Galaxaura Elongata and Characterization of Their Antibacterial Activity. Arab. J. Chem. 10, 3-29-3039.
  • ABDUL-WAHAB, S., MARIKAR, F., 2012. The Environmental Impact of Gold Mines: Pollution by Heavy Metal. Cent. Eur. J. Eng. 2, 304-313.
  • AGUDELO, W., MONTOYA, Y., BUSTAMANTE., J., 2018. Using A Non-Reducing Sugar in The Green Synthesis of Gold and Silver Nanoparticles by The Chemical Reduction Method, Dyna. 85, 69-78.
  • AHMED, S., ANNU, IKRAMA, S., YUDHA S.S., 2016. Biosynthesis of Gold Nanoparticles: A Green Approach. J. Photoch. Photobio. B. 161, 141-153.
  • ALSHARIF, S.M., SALEM, S.S., ABDEL-RAHMAN, M.A., FOUDA, A., EID, A.M., HASSAN, S., AWAD, A.A., MOHAMED, A.A., 2020. Multifunctional Properties of Spherical Silver Nanoparticles Fabricated Bydifferent Microbial Taxa, Heylion. 6, 1-13.
  • AITKEN, A., LEARMONTH, M.P., 2002. The Protein Protocols Handbook, Springer, Berlin, Germany
  • AMENDOLA, V., MENEGHETTI, M., STENER, M., GUO, J., CHEN, S., CRESPO, P., GARCI´A, M.A., HERNANDO, A., PENGO, P., PASQUATO, P., 2014. Physico-Chemical Characteristics of Gold Nanoparticles, Gold Nanoparticles in Analytical Chemistry. 81-151.
  • BAI, X., WANG, Y., SONG, Z., FENG, Y., CHEN, Y., ZHANG, D., FENG, L., 2020. The Basic Properties of Gold Nanoparticles and their Applications in Tumor Diagnosis and Treatment. Int. Mol. Sci. 21, 2480.
  • CAIRES, C.S.A., LEAL, C.R.B., RAMOS, C.A.N., BOGO, D., LIMA, A.R., ARRUDA, E.L., OLIVEIRA, S.L., CAIRES, R.L., NASCIMENTO, V.A., 2017. Photoinactivation Effect of Eosin Methylene Blue and Chlorophyllin Sodium-Copper Against Staphylococcus aureus and Escherichia coli. Laser Med. Sci. 32, 1081-1088.
  • CALAVIA, P.D., BRUCE, G., PÉREZ-GARCÍA, L., RUSSELL, D.A., Photosensitiser-Gold Nanoparticle Conjugates for Photodynamic Therapy of Cancer, Photoch. Photobio. Sci. 17, 1534-1552.
  • CATÃO, M.H., BATISTA, A.L.A., 2020. In VitroEvaluation of the Antibacterial Effect of Photodynamic Therapy with Methylene Blue, Pesqui. Bras. Odontopediatria. Clin. Integr. 20, 1-10.
  • CSILLIK, O., ASNER, G.P., 2020. Aboveground carbon emissions from gold minning in the Peruvian Amazon, Envior. Res. Lett. 15, 014006.
  • DOMANY, E.B.E., ESSAM, T.M., AHMED, A.E., FARGHALI, A.A., 2018. Biosynthesis Physico-Chemical Optimization of Gold Nanoparticles as Anti-Cancer and Synergetic Antimicrobial Activity Using Pleurotus ostreatus Fungus. J. Appl. Pharma. 8, 119-128.
  • FERNANDO, S.S.N., GUNASEKARA, T.D.C.P., HOLTON, J., 2018. Antimicrobial Nanoparticles: Applications and Mechanisms of Action. SLJID. 8, 2-11.
  • FOUDA, A., ABDEL-MAKSOUD, G., ABDEL-RAHMAN, M., EID, A., BARGHOTH, M.G., ABDEL-HALEEM ELSADANY, M., 2019. Monitoring the Effect of Biosynthesized Nanoparticles Against Biodeterioration of Cellulose-Based Materials by Aspergillus Niger. Cellulose. 26, 6583-6597.
  • GHODAKE, G., EOM, C.Y., KIM, S.W., JIN, E., 2010. Biogenic Nano-Synthesis; Towards the Efficient Production of the Biocompatible Gold Nanoparticles. Bull. Korean Chem. Soc. 31, 2771-1775.
  • GUEORGIEVA, T., DIMITROV, S., DOGANDHIYSKA, V., KALCHINOV, V., BELCHEVA, M., MANTAREVA, V., ANGELOV, I., KUSSOVSKI, V., 2010. Susceptibility of S. Aureus to Methylene Blue Haematoporphyrin, Phtalocyanines Photodynamic Effects. J of IMAB. 16, 51-53.
  • HABASHI, F., 2016. Gold – An Historical Introduction. Gold Ore Processing, 1-20.
  • HAISS, W., THANH, N.K.T., AVEYARD, J., FERNIG, D.G., 2007. Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra. Anal. Chem. 79, 4215-4221.
  • HASSAN, S., FOUDA, A., RADWAN, A.A., SALEM, S.S., BARGHOTH, M.G., AWAD, M.M., ABDO, A.M., ELGAMAL, M.S., 2019. Endophytic Actinomycetes Streptomyces Spp Mediated Biosynthesis of Copper Oxide Nanoparticles as a Promising Tool for Biotechnological Application. J. Biol. Inorg. Chem. 24, 377-393.
  • HASSAN, S., SALEM, S.S., FOUDA, A., AWAD, M.A., EL-GAMAL, A.S., ABDO, A.M., 2018. New Approach for Antimicrobial Activity and Bio-Control of Variouspathogens by Biosynthesized Copper Nanoparticles Using Endophyticactinomycetes, J. Radiat. Res. Appl. Sci. 11, 262-270.
  • HONG, E.J., CHOI, D.G., SHIM, M.S., 2016. Targeted and Effective Photodynamic Therapy for Cancer Using Functionalized Nanomaterials. Acta Pharm. Sin. B. 6, 297-307.
  • HONARY, S., GHARAEI-FATHABAD, E., PAJI, Z.K., ESLAMIFAR, M., 2012. A Novel Biological Synthesis of Gold Nanoparticle by Enterobacteriaceae Family. Trop. J. Pharm. Res. 11, 887.
  • HUANG, L., DAI, T., HAMBLIN, M.R., 2011. Antimicrobial Photodynamic Inactivation and Photodynamic Therapy for Infections, Methods Mol. Biol. 635, 155-173.
  • HUANG, X., EL-SAYED, M.A., 2010. Gold nanoparticles: Optical Properties and Implementations in Cancer Diagnosis and Photothermal Therapy. J. Adv. Res. 1, 13-28.
  • KEIJOK, W.J., PEREIRA, R.H.A., ALVAREZ, L.A.C., PRADO, A.R., DA SILVA, A.R., RIBEIRO, J., DE OLIVEIRA, J.P., GUIMARÃES, M.C.C., 2019. Controlled Biosynthesis of Gold Nanoparticles with Coffea Arabica Using Factorial Design. Sci. Rep. 9, 1-10.
  • KHAN, A., RASHID, R., MURTAZA, G., ZAHRA, A., 2014. Gold Nanoparticles: Synthesis and Applications in Drug Delivery. Trop. J. Pharm. Res. 13, 1169-1177.
  • KUMAR, H.K., VENKATESH, N., BHOWMIK, H., KUILA, A., 2018. Metallic Nanoparticle: A Review. Biomed. J. Sci. Tech. Res. 4, 3765-3775.
  • LEE, K.X., SHAMELI, K., YEW, Y.P., TEOW, S.Y., JAHANGIRIAN, H., RAFIEE-MOGHADDAM, R., WEBSTER, T.J., 2020. Recent Developments in the Facile Bio-Synthesis of Gold Nanoparticles (AuNPs) and Their Biomedical Applications. Int. J. Nanomedicine. 15, 275-300.
  • LKHAGVADULAM, B., KEY, Y., YOO, I., KIM, J.H., 2012. Size-Dependent Photodynamic Activity of Gold Nanoparticles Conjugate of Water Soluble Purpurin-18-N-Methyl-D-Glucamin. BMRI. 4, 720579.
  • LOHßE, A., KOLINKO, I., RASCHDORF, O., UEBE, R., BORG, S., BRACHMANN, A., PLITZKO, J.M., MÜLLER, R., ZHANG, Y., SCHÜLER, D., 2016. Overproduction of Magnetosomes by Genomic Amplification of BiosynthesisRelated Gene Clusters in a Magnetotactic Bacterium. Appl. Environ. Microbiol. 82, 3031-3041.
  • LUCKY, S.S., SOO, K.C., ZHANG, Y., 2015. Nanoparticles in Photodynamic Therapy. Chem. Rev. 2015, 115, 1990– 2042.
  • MAKAROV, V.V., LOVE, A.J., SINITSYNA, O.V., MAKAROVA, S.S., YAMINSKY, I.V., TALIANSKY, M.E., KALININA, N.O., 2014. “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants. Acta Naturae. 6, 35-44.
  • MALIK, B., PIRZADAH, T.B., KUMAR, M., REHMAN, R.U., 2017. Biosynthesis of Nanoparticles and Their Application in Pharmaceutical Industry. Nanotechnology, 235-252.
  • MALISZEWSKA, I., 2013. Microbial Mediated Synthesis of Gold Nanoparticles: Preparation, Characterization and Cytotoxicity Studies, Dig. J. Nanomater. Bios. 8, 1123-1131.
  • MALISZEWSKA, I., LEŚNIEWSKA, A., OLESIAK-BAŃSKA, J., MATCZYSZYN, K., SAMOĆ, M., 2014. Biogenic Gold Nanoparticles Enhance Methylene Blueinduced Phototoxic Effect on Staphylococcus epidermidis, J. Nanopart. Res. 16, 2457.
  • MALISZEWSKA, I., WAWRZYŃCZYK, D., WANARSKA, E., The Effect of Glucose and Human Serum on 5- Aminolevulinic Acid Mediated Photodynamic Inactivation of Candida albicans. Photodiagn. Photodyn. 29:101623.
  • MALISZEWSKA, I., WRÓBEL, J., WANARSKA, E., PODHORODECKI, A., MATCZYSZYN, K., 2019. Synergistic Effect of Methylene Blue and Biogenic Gold Nanoparticles against Enterococcus faecalis. Photodiagn. Photodyn. 27, 218-226.
  • MENON, S., RAJESHKUMAR, S., KUMAR, V.S., 2017. A Review on Biogenic Synthesis of Gold Nanoparticles, Characterization, and its Application. Resource-Efficient Technologies. 3, 1-12.
  • MESQUITA, M., DIAS, C., NEVES, M., ALMEIDA, A., AMPARO, F., 2018. Revisiting Current Photoactive Materials for Antimicrobial Photodynamic Therapy, Molecules, 23, 1-47.
  • MHASHAL, A.R., ROY, S., 2016. Free Energy of Bare and Capped Gold Nanoparticles Permeating through a Lipid Bilayer. ChemPhysChem. 17, 3504-3514.
  • MOHAMED, A.A., FOUDA, A., ABDEL-RAHMANB, M.A., HASSAN, S., EL-GAMAL, M.S., SALEM, S.S., SHAHEEN, T.I., 2019. Fungal Strain Impacts the Shape, Bioactivity and Multifunctional Propertiesof Green Synthesized Zinc Oxide Nanoparticles, Biocatal. Agric. Biotechnol. 19, 101103.
  • NORUZI, M., 2014. Biosynthesis of gold nanoparticles using plant extract. Bioproc. Biosyst. Eng. 38, 1-14.
  • OGOLA, J.S., MITULLAH, W., OMULO, M.A., 2002. Impact of Gold Mining on the Environment and Human Health: A Case Study in the Migori Gold Belt, Kenya. Environ. Geochem. Health. 24, 1-19.
  • PARK, J.E., ATOBE, M. FUCHIGAMI, T., 2006. Synthesis of Multiple Shapes of Gold Nanoparticles with Controlled Sizes in Aqueous Solution Using Ultrasound. Ultrason. Sonochem. 13, 237–241
  • PEREZ-JUSTE, J., PASTORIZA-SANTOS, I., LIZ-MARZAN, L.M., MULVANEY, P., 2005. Gold Nanorods: Synthesis, Characterization and Applications. Coordin. Chem. Rev. 249, 1870-1901.
  • PESTOVSKY, Y.S., MARTINEZ-ANTONIO, A., 2018. Synthesis of Gold Nanoparticles by Tetrachloroaurate Reduction with Cyclodextrin. Quim. Nova. 41, 926-932. PROMEGA, 2018. BacTiter-Glo™ Microbial Cell Viability Assay Technical Bulletin.
  • SALEM, S.S., FOUDA, A., 2020. Green Synthesis of Metallic Nanoparticles and Their Prosective Biotechnological Applications: An Overview. Biol. Trace Elem. Res. 1-28.
  • SENGANI, M., GRUMEZESCU, A.M., RAJESWARIA, V.D., 2017. Recent Trends and Methodologies in Gold Nanoparticle Synthesis- A Prospective Review on Drug Delivery Aspect, OpenNano. 2, 37-46.
  • SHI, C., ZHU, N., CAO, Y., WU, P., 2015. Biosynthesis of Gold Nanoparticles Assisted by the Intracellular Protein Extract of Pycnoporus sanguineusand its Catalysis in Degradation of 4-Nitroaniline, Nanoscale Res. Lett. 10, 1-8.
  • SOLIMAN, A.M., ABDEL-LATIF, W., SHEHATA, I.H., FOUDA, A., ABDO, A.M., AHMED, Y.M., 2020. Green Approach to Overcome the Reistance Pattern of Candida spp. Using Biosynthesized Silver Nanoparticles Fabricated by “Penicillium chrysogenum F9, Biol. Trace Elem. Res. 1-12.
  • TARDIVO, J.P., GIGLIO, A.D., OLIVEIRA, C.S., GABRIELLI, D.S., JUNQUEIRA, H.C., TADAB, D.B., SEVERINO, D., TURCHIELLO, R.F., BAPTISTA, M.S., 2005. Methylene Blue in Photodynamic Therapy: From Basic Mechanisms to Clinical Applications. 2, 175-191.
  • TAWFIK, A.A., ALSHARNOUBI, J., MORSY, M., 2015. Photodynamic Antibacterial Enhanced Effect Of Methylene Blue-Gold Nanoparticles Conjugate on Staphylococcal aureus Isolated from Impetigo Lesions In Vitro Study, Photodiagn. Photodyn. 12, 215-220.
  • TIKARIHA, S., SINGH, S., BANERJEE, S., VIDYARTHI, A.S., 2012. Biosynthesis of Gold Nanoparticles, Scope and Application: A review. IJPSR. 3, 1603-1615.
  • UMER, A., NAVEED, S., RAMZAN, N., RAFIQUE, M.S., IMRAN, M., 2014. A Green Method for The Synthesis of Copper Nanoparticles Using L-Ascorbic Acid, Revistamateria. 19, 197-203.
  • VITHIYA, K., SEN, S., 2011. Biosynthesis of Nanoparticles. Int. J. Pharm. Sci. 11, 2781-2785.
  • WANG, L.H., WANG, M.S., ZENG, X.A., LIU, Z.W., Temperature-Mediated Variations in Cellular Membrane Fatty Acid Composition of Staphylococcus aureus in Resistance to Pulsed Electric Fields. BBA-Biomembranes. 2016, 1858, 1791-1800.
  • YANNOPOULOS, J.C., 1991. Physical and Chemical Properties of Gold. The Extractive Metallurgy of Gold, 11-23.
  • YEH, Y.C., CRERAN, B., ROTELLO, V.M., 2012. Gold Nanoparticles: Preparation, Properties, and Applications in Bionanotechnology. Nanoscale. 4, 1871-1870.
Uwagi
This work was partially financed by a statutory activity subsidy from the Polish Ministry of Science and Higher Education (PMSHE) for the Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62038e87-b4f0-4c92-b1f1-ac281c52c4c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.