PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of phytotoxicity of selected phosphonium ionic liquid

Identyfikatory
Warianty tytułu
PL
Porównanie fitotoksyczności wybranych fosfoniowych cieczy jonowych
Języki publikacji
EN
Abstrakty
EN
Ionic liquids have attracted considerable interest in various areas as new, non-volatile and non-flammable organic solvents, catalysts, reaction additives, ligands, drugs and other dedicated materials etc. Their general use, sometimes in bulky quantities, requires determination of their potential ecotoxicity on selected organisms. In the present work, influence of triphenylmethylphosphonium iodide (1) and triphenylhexadecylphosphonium iodide (2), introduced to soil, on germination and early stages of growth and development of superior plants was investigated using the plant growth test based on the OECD/OCDE 208/2006. In this test, the seeds of selected species, i.e. land superior plants - spring barley (Hordeum vulgare) and common radish (Raphanus sativus L. subvar. radicula Pers.) were planted in pots containing soil to which a test chemical compound had been added and in pots with control soil. To evaluate the phytotoxicity of ionic liquids 1 and 2 germination and weight (dry and fresh) of control plant seedlings were determined and compared with the germination and weight (dry and fresh) of the seedlings of plants grown in the soil watered with appropriate amounts of the test chemicals. The visual assessment of any types of damage to the test species, such as growth inhibition, chlorosis and necrosis, was also carried out and documented by digital photographs. Based on the obtained results, magnitudes of the LOEC - the lowest concentration causing observable effects in the form of reduction in growth and germination compared with the control and the NOEC - the highest concentration not causing observable, toxic effects - were also determined.
PL
Ciecze jonowe wzbudziły duże zainteresowanie w różnych dziedzinach jako nowe nielotne i niepalne rozpuszczalniki organiczne, katalizatory, dodatki do reakcji, ligandy, leki itp. Jednocześnie powszechne stosowanie cieczy jonowych, czasem w dużych ilościach, wymaga określenia ich potencjalnej ekotoksyczności dla wybranych organizmów. W przedstawionej pracy wpływ jodku trifenylometylofosfoniowego (1) i jodku trifenyloheksadecylofosfoniowego (2), wprowadzonych do gleby w różnych stężeniach, na wschody i wczesne stadia wzrostu i rozwoju roślin wyższych, określono w badaniach fitotoksyczności w oparciu o przewodnik OECD/OCDE 208/2006. W przeprowadzonym eksperymencie nasiona wybranych gatunków lądowych roślin wyższych - jęczmienia jarego (Hordeum vulgare) i rzodkiewki zwyczajnej (Raphanus sativus L. subvar. radicula Pers.) wysiano do wazonów zawierających glebę, do której dodano badany związek chemiczny, i do wazonów zawierających glebę kontrolną. Oceniając fitotoksyczność związków (1) i (2), określono i porównano wschody i masę (suchą i zieloną) pędów roślin kontrolnych ze wschodami i masą (suchą i zieloną) pędów roślin rosnących na glebie, do której wprowadzono odpowiednie ilości związków. Dokonano ponadto oceny wizualnej wszystkich uszkodzeń badanych gatunków roślin, takich jak zahamowanie wzrostu, nekroza i chloroza, czego odzwierciedleniem są wykonane zdjęcia cyfrowe roślin doświadczalnych. Na podstawie otrzymanych wyników określono wielkości LOEC (najniższe stężenie wywołujące zauważalne skutki w postaci obniżki we wzroście i wschodach w porównaniu z kontrolą) oraz NOEC (najwyższe stężenie niewywołujące zauważalnych, toksycznych skutków).
Rocznik
Strony
281--285
Opis fizyczny
Bibliogr. 67 poz., wykr., tab., rys., fot.
Twórcy
autor
  • Institute of Chemistry, Environment Protection and Biotechnology, Jan Długosz University, al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland, phone +48 34 361 49 18, fax +48 34 366 53 22
  • Institute of Chemistry, Environment Protection and Biotechnology, Jan Długosz University, al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland, phone +48 34 361 49 18, fax +48 34 366 53 22
  • Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, ul. Sienkiewicza 112, 90-363 Łódź, Poland
  • Institute of Chemistry, Environment Protection and Biotechnology, Jan Długosz University, al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland, phone +48 34 361 49 18, fax +48 34 366 53 22
autor
  • Institute of Chemistry, Environment Protection and Biotechnology, Jan Długosz University, al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland, phone +48 34 361 49 18, fax +48 34 366 53 22
autor
  • Institute of Chemistry, Environment Protection and Biotechnology, Jan Długosz University, al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland, phone +48 34 361 49 18, fax +48 34 366 53 22
Bibliografia
  • [1] Docherty KM, Kulpa ChF. Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem. 2005;7:185-189. DOI: 10.1039/b419172b.
  • [2] Keskin S, Kayrak-Talay D, Akman U, Hortaçsu Ö. A review of ionic liquids towards supercritical fluid application. J Supercrit Fluids. 2007;4:150-180. DOI: 10.1016/j.supflu.2007.05.013.
  • [3] Romero A, Santos A, Tojo J, Rodríquez A. Toxicity and biodegradability of imidazolium ionic liquids. J Hazard Mater. 2008;151:268-273. DOI: 10.1016/j.jhazmat.2007.10.079. ]
  • [4] Stolte S, Arning J, Bottin-Weber U, Matzke M, Stock F, Thiele K, et al. Anion effects on the cytotoxicity of ionic liquids. Green Chem. 2006;8, 621-629. DOI: 10.1039/c0gc00579g.
  • [5] Berthod A, Carda-Broch S. Use of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate in CCC. Anal Bioanal Chem. 2004;380:168-177. DOI 10.1007/s00216-004-2717-8.
  • [6] Wilkes JS. A short history of ionic liquids - from molten salts to neoteric solvents. Green Chem. 2002;4:73-80. DOI: 10.1039/b110838g.
  • [7] Frąckowiak E, Lota G, Pernak J. Room-temperature phosphonium ionic liquids for supercapacitor application. Appl Phys Lett. 2005;86:164104-1-164104-3. DOI: 10.1063/1.1906320.
  • [8] Bałczewski P, Bachowska B, Białas T, Biczak R, Wieczorek WM, Balińska A. Synthesis and phytotoxicity of new ionic liquids incorporating chiral cations and/or chiral anions. J Agric Food Chem. 2007;55:1881-1892. DOI: 10.1021/jf062849q.
  • [9] Salminen J, Papaiconomou N, Kumar RA, Lee J-M, Kerr J, Newman J, et al. Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids. Fluid Phase Equilib. 2007;261:421-426. DOI: 10.1016/j.fluid.2007.06.031.
  • [10] Alvarez-Guerra M, Irabien A. Desing of ionic liquids: an ecotoxicity (Vibro fisheri) discrimination approach. Green Chem. 2011;13:1507-1516. DOI: 10.1039/C0GC00921K.
  • [11] Pernak J, Stefaniak F, Węglewski J. Phosphonium acesulfamate based ionic liquids. Eur J Org Chem. 2005:650-652. DOI: 10.1002/ejoc.200400658.
  • [12] Pernak J, Feder-Kubis J. Synthesis and properties of chiral ammonium-based ionic liquids. Chem Eur J. 2005;11:4441-4449. DOI: 10.1002/chem.200500026.
  • [13] Pernak J, Feder-Kubis J, Cieniecka-Rosłonkowicz A, Fishmeister C, Griffin ST, Rogers RD. Synthesis and properties of chiral imidazolium ionic liquids with a (1R,2S,5R-( )-menthoxymethyl substituent. New J Chem. 2007;31:879-892. DOI: 10.1039/b616215k.
  • [14] Pernak J, Borucka N, Walkiewicz F, Markiewicz B, Fochtman P, Stolte S, et al. Synthesis, toxicity, biodegradability and physiocochemical properties of 4-benzyl-4-methylmorpholinum-based ionic liquids. Green Chem. 2001;13:2901-2910. DOI: 10.1039/clgc15468k.
  • [15] Cybulski J, Wiśniewska A, Kulig-Adamiak A, Dąbrowski Z, Praczyk T, Michalczyk A, et al. Mandelate and prolinate ionic liquids: synthesis, characterization, catalytic and biological activity. Tetrahedron Lett. 2011;52:1325-1328. DOI: 10.1016/j.tetlet.2011.01.069.
  • [16] Erbeldinger M, Mesiano AJ, Russell AJ. Enzymatic catalysis of formation of Z-aspartame in ionic liquids - an alternative to enzymatic catalysis in organic solvents. Biotechnol Prog. 2000;16:1129-1131. DOI: 10.1021/bp000094g.
  • [17] Zhang J, Liu S-S, Liu H-L. Effect of ionic liquid on the toxicity of pesticide to Vibrio-qinghaiensis sp.-Q67. J Hazard Mater. 2009;170:920-927. DOI: 10.1016/j.jhazmat.2009.05.056.
  • [18] Zhang J, Liu S-S, Dou R-N, Liu H-L, Zhang J. Evaluation on the toxicity of ionic liquid mixture with antagonism and synergizm to Vibrio-qinghaiensis sp.-Q67. Chemosphere. 2011;82:1024-1029. DOI: 10.1016/j.chemosphere.2010.10.063.
  • [19] Myles L, Gore R, Špulák M, Gathergood N, Connon SJ. Highly recyclable, imidazolium derived ionic liquids of low antimicrobial and antifungal activity: A new strategy for acid catalysis. Green Chem. 2010;12:1157-1162. DOI: 10.1039/c003301d.
  • [20] Docherty KM, Joyce MV, Kulacki KJ, Kulpa CF. Microbial biodegradation and metabolite toxicity of three pyridinium-based cation ionic liquids. Green Chem. 2010;12:701-712. DOI: 10.1039/b919154b.
  • [21] Pham TPT, Cho C-W, Yun Y-S. Environmental fate and toxicity of ionic liquids: A review. Water Res. 2010;44:352-372. DOI: 10.1016/j.watres.2009.09.030.
  • [22] Matsumoto M, Mochiduki K, Fukunishi K, Kondo K. Extraction of organic acids using imidazolium-based ionic liquids and their toxicity to Lactobacillus rhamnosus. Sep Purif Technol. 2004;40:97-101. DOI: 10.1016/j.seppur.2004.01.009.
  • [23] Ventura SPM, Gonçalves AMM, Gonçalves F, Coutinho JAP. Assessing the toxicity on [C3mim][Tf2N] to aquatic organisms of different trophic levels. Aquat Toxicol. 2010;96:290-297. DOI: 10.1016/j.aquatox.2009.11.008.
  • [24] Cho Ch-W, Pham TPT, Jeon Y-Ch, Vijayaraghavan K, Choe W-S, Yun Y-S. Toxicity of imidazolium salt with anion bromide to a phytoplankton Selenastrum capricornutum: effect of alkyl-chain length. Chemosphere. 2007;69:1003-1007. DOI: 10.1016/j.chemosphere.2007.06.023.
  • [25] Couling DJ, Bernot RJ, Docherty KM, Dixon JNK, Magin EJ. Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure-property relationship modeling. Green Chem. 2006;8:82-90. DOI: 10.1039/b511333d.
  • [26] Samorí Ch, Malferrari D, Valbonesi P, Montecavalli A, Moretti F, Galletti P, et al. Introduction of oxygenated side chain into imidazolium ionic liquids: Evaluation of the effects at different biological organization levels. Ecotoxicol Environ Saf. 2010;73:1456-1464. DOI: 10.1016/j.ecoenv.2010.07.020.
  • [27] Pretti C, Chiappe C, Baldetti I, Brunini S, Monni G, Intorre L. Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia manga and Danio rerio. Ecotoxicol Environ Saf. 2009;72:1170-1176. DOI: 10.1016/j.ecoenv.2008.09.010.
  • [28] Costello DM, Brown LM, Lamberti GA. Acute toxic effects of ionic liquids on zebra mussel (Dreissena polymorpha) survival and feeding. Green Chem. 2009;11:548-553. DOI: 10.1039/b822347e.
  • [29] Matzke M, Stolte S, Thiele K, Juffernholz T, Arning J, Ranke J, et al. The influence of anion species on the toxicity of 1-alkyl-3-methylimidazolium ionic liquids observed in an (eco)toxicological test battery. Green Chem. 2007;9:1198-1207. DOI: 10.1039/b705795d.
  • [30] Pretti C, Chiappe C, Pieraccini D, Gregori M, Abramo F, Monni G, et al. Acute toxicity of ionic liquids to the zebrafish (Danio rerio). Green Chem. 2006;8:238-240. DOI: 10.1039/b511554j.
  • [31] Matzke M, Stolte S, Böschen A, Filser J. Mixture effects and predictability of combination effects of imidazolium based ionic liquids as well as imidazolium based ionic liquids and cadmium on terrestrial plants (Triticum aestivum) and limnic green algae (Scenedesmus vacuolatus). Green Chem. 2008;10:784-792. DOI: 10.1039/b802350f.
  • [32] Latała A, Nędzi M, Stepnowski P. Toxicity of imidazolium and pyrolidinium based ionic liquids towards alga. Chlorella vulgaris, Oocystis submarina (green algae) and Cyclotella meneghiniana, Skeletonema marinoi (diatoms). Green Chem. 2009;11,580-588. DOI: 10.1039/b821140j.
  • [33] Cho Ch-W, Pham PTP, Jeon Y-Ch, Yun Y-S. Influence of anion on the toxic effects of ionic liquids to a phytoplankton Selenastrum capricornutum. Green Chem. 2008;10:67-72. DOI: 10.1039/b705520j.
  • [34] Petkovic M, Ferguson JL, Nimal Gunaratne HQ, Ferreira R, Leităo MC, Seddon KR, et al. Novel biocompatible cholinium-based ionic liquids - toxicity and biodegradability. Green Chem. 2010;12:643-649. DOI: 10.1039/b922247b.
  • [35] Petkovic M, Ferguson J, Bohn A, Trindade J, Martins I, Carvalho MB, et al. Exploring fungal activity in the presence of ionic liquids. Green Chem. 2009;11:889-894. DOI: 10.1039/b823225c.
  • [36] Matzke M, Stolte S, Arning J, Uebers U, Filser J. Imidazolium based ionic liquids in soils: effects of the side chain length on wheat (Triticum aestivum) and cress (Lepidium sativum) as affected by different clay and organic matter. Green Chem. 2008;10:584-591. DOI: 10.1039/b717811e.
  • [37] Biczak R, Bachowska B, Bałczewski P. Badanie fitotoksyczności cieczy jonowej chlorek 1-(metylo-tiometylo)-3-butyloimidazoliowy. Proc ECOpole. 2010;4(1):105-113.
  • [38] Matzke M, Stolte S, Arning J, Uebers U, Filser J. Ionic liquids in soils: effects of different anion species of imidazolium based ionic liquids on wheat (Triticum aestivum) as affected by different clay minerals clay concentration. Ecotoxicology. 2009;18:197-203. DOI: 10.1007/s10646-008-0272-3.
  • [39] Studzińska S, Buszewski B. Study of toxicity of imidazolium ionic liquids to watercress (Lepidium sativum L.). Anal Bioanal Chem. 2009;393:983-990. DOI: 10.1007/s00216-008-2523-9.
  • [40] Steliga T, Kapusta P, Jakubowicz P. Ocena efektywności procesów bioremediacyjnych na podstawie testów toksykologicznych. Wiertnictwo Nafta Gaz. 2009;26:555-566.
  • [41] Wolska L, Mędrzycka K. Ocena ekotoksyczności osadów dennych z portów morskich w Gdańsku i Gdyni. Ochr Środow. 2009;31:49-52.
  • [42] Płaza GA, Nałęcz-Jawecki G, Pinyakong O, Illmer P, Margesin R. Ecotoxicological and microbiological characterization of soil from heavy-metal- and hydrocarbon contaminated sites. Environ Monit Assess. 2010;163:477-488. DOI: 10.1007/s10661-009-0851-7.
  • [43] Tsakovski S, Kudłak B, Simeonov V, Wolska L, Garcia G, Namieśnik J. Relationship between heavy metal distribution in sediment samples and their ecotoxicity by the use of the Hasse diagram technique. Anal Chim Acta. 2012;719:16-23. DOI: 10.1016/j.aca.2011.12.052.
  • [44] Mankiewicz-Boczek J, Nałęcz-Jawecki G, Drobniewska A, Kaza M, Sumorok B, Izydorczyk K, et al. Application of a microbiotests battery for complete toxicity assessment of rivers. Ecotoxicol Environ Saf. 2008;71:830-836. DOI: 10.1016/j.ecoenv.2008.02.023.
  • [45] Wolska L, Sagajdakow A, Kuczyńska A, Namieśnik J. Application of ecotoxicological studies in integrated environmental monitoring: Possibilities and problems. Trends Anal Chem. 2007;26:332-344. DOI: 10.1016/j.trac.2006.11.012.
  • [46] Alvarenga P, Palma P, Gonçalves, Fernandez RM, Cunha-Queda AC, Duarte E, et al. Evaluation of chemical and ecotoxicological characteristics of biodegradable organic residues for application to agricultural land. Environ Int. 2007;33:505-513. DOI: 10.1016/j.envint.2006.11.006.
  • [47] Luis P, Ortiz I, Aldaco R, Irabien A. A novel group contribution metod ine the development of a QSAR for predicting the toxicity (Vibrio fischeri EC50) of ionic liquids. Ecotoxicol Environ Saf. 2007:67:423-429. DOI: 10.1016/j.ecoenv.2006.06.010.
  • [48] Ranke J, Möllter K, Stock F, Bottin-Weber U, Poczobutt J, Hoffmann J, et al. Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicol Environ Saf. 2004;58:396-404. DOI: 10.1016/S0147-6513(03)00105-2.
  • [49] Pretti C, Renzi M, Focardi SE, Giovani A, Monni G, Melai B, et al. Acute toxicity and biodegradability of N-alkyl-N-methylmorpholinium and N-alkyl-DABCO based ionic liquids. Ecotoxicol Environ Saf. 2011;74:748-753. DOI: 10.1016/j.ecoenv.2010.10.032.
  • [50] Manzo S, De Nicola F, De Luca Picione F, Maisto G, Alfani A. Assessment of the effects of soil PAH accumulation by a battery of ecotoxicological tests. Chemosphere. 2008;71:1937-1944. DOI: 10.1016/j.chemosphere.2007.12.026.
  • [51] Oleszczuk P. Toxicity of light soil fertilized by sewage sludge or compost in relation to PAHs content. Water Air Soil Pollut. 2010;210:347-356. DOI: 10.1007/s11270-009-0257-8.
  • [52] Płaza G, Nałęcz-Jawecki G, Ulfig K, Brigmon RL. The application of bioassays as indicators of petroleum- contaminated soil remediation. Chemosphere. 2005;59:289-296. DOI: 10.1016/j.chemosphere.2004.11.049.
  • [53] Oleszczuk P, Hollert H. Comparison of sewage sludge toxicity to plants and invertebrates in three different soils. Chemosphere. 2011;83:502-509. DOI: 10.1016/j.chemosphere.2010.12.061.
  • [54] Kudłak B, Wolska L, Namieśnik J. Determination of LC50 toxicity data of selected heavy metals toward Heterocypris incongruens and their comparison to „direct-contact” and microbiotests. Environ Monit Assess. 2011;174:509-516. DOI: 10.1007/s10661-010-1474-8.
  • [55] Garczyńska M, Mazur A, Kostecka J. Wybrane aspekty toksykologii dżdżownic w kontekście zrównoważonego rozwoju. Zesz Nauk PTGleg. 2009;11:61-66.
  • [56] Hamdi H, Manusadžianas L, Aoyama I, Jedidi N. Effects of anthracene, pyrene and benzo[a]pyrene spiking and sewage sludge compost amendment on soil ecotoxicity during a bioremediation process. Chemosphere. 2006;65:1153-1162. DOI: 10.1016/j.chemosphere.2006.03.065.
  • [57] Hamdi H, Benzarti S, Aoyama I, Jedidi N. Rehabilitation of degraded soils containing aged PAHs based on photoremediation with alfalfa (Medicago sativa L.). Int Biodeterior Biodegrad. 2012;67:40-47. DOI: 10.1016/j.ibiod.2011.10.009.
  • [58] Oleszczuk P. Phytotoxicity of municipal sewage sludge composts related to physio-chemical properties, PAHs and heavy metals. Ecotoxicol Environ Saf. 2008;69:496-505. DOI: 10.1016/j.ecoenv.2007.04.006.
  • [59] Cadergreen N, Abbaspoor M, Sørensen H, Streibig JC. Is mixture toxicity measured on a biomarker indicative of what happens on a population level? A study with Lemma minor. Ecotoxicol Environ Saf. 2007;67:323-332. DOI: 10.1016/j.ecoenv.2006.12.006.
  • [60] Patent PL 212157 B1, 2008.
  • [61] Baczyńska M, Regel-Rosocka M, Fosfoniowe ciecze jonowe jako przenośniki jonów metali. Przem Chem. 2013;92:1574-1576.
  • [62] Zgłoszenie patentowe P-404642, 2013.
  • [63] PN-ISO 11269-2:2001, Oznaczanie wpływu zanieczyszczeń na florę glebową. Wpływ związków chemicznych na wschody i wzrost roślin wyższych.
  • [64] OECD/OCDE, Guidelines for the Testing of Chemicals. Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test, 208/2006.
  • [65] PN-EN 13432: Opakowania - Wymagania dotyczące opakowań przydatnych do odzysku przez kompostowanie i biodegradację - Program badań i kryteria oceny do statecznej akceptacji opakowań, 2002.
  • [66] Skrzypczak A, Brycki B, Mirska I, Pernak J. Synthesis and antimicrobial activities of new quats. Eur J Med Chem. 1997;32:661-668.
  • [67] Lukáč M, Garajová M, Mrva M, Bukovský M, Ondriska F, Máriássy E, et al. Relationship between aggregation properties and antimicrobial activities of alkylphosphocholines with branched alkyl chains. Int. J Pharm. 2012;423:247-256. DOI: 10.1016/j.ijpharm.2011.11.047.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62034d13-3f84-48a3-9921-515f89526ac2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.