PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel kinematic model for a functional spinal unit and a lumbar spine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this paper is to present the novel model for the functional spinal unit and spine designed as a rigid mechanism and solve it with methods commonly used in robotics. Method: The structure of the intervertebral joint is analyzed with special attention paid to elements defining the displacements in the joint. The obtained mechanism is then numerically solved using a constraint equations method. Results: The input data set for the simulation is prepared using the 3D scan of the lumbar spine. The simulation results show that the intervertebral joint mechanism can satisfy the ranges of flexion, lateral bending and axial rotation as compared with literature data. It is also possible to study complex, coupled displacements of the lumbar spine segment. Conclusions: Structural analysis of the functional spinal unit with methods common in robotics can eventually lead to better understanding of stabilizing and guiding mechanisms. The proposed mechanism can be used as a reference in the study of spine guidance. It can reproduce the angular displacements of the actual functional spine unit. It is also possible to expand the model to facilitate the analysis of a lumbar spine segment.
Rocznik
Strony
87--95
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
Twórcy
  • Division of Experimental Mechanics and Biomechanics, Institute of Applied Mechanics, Cracow University of Technology, Poland
autor
  • Division of Experimental Mechanics and Biomechanics, Institute of Applied Mechanics, Cracow University of Technology, Poland
Bibliografia
  • [1] ABEDRABBO G., FISETTE P., ABSIL P.A., MAHAUDENS P., DETREMBLEUR C., RAISON M., BANSE X., AUBIN C.E., MOUSNY M., A multibody-based approach to the computation of spine intervertebral motions in scoliotic patients, Stud. Health Technol. Inform., 2012, 176, 95–98.
  • [2] ALAPAN Y., DEMIR C., KANER T., GUCLU R., INCEOĞLU S., Instantaneous center of rotation behavior of the lumbar spine with ligament failure, J. Neurosurg-Spine, 2013, 18(6), 617–626.
  • [3] BANERJEE P.S., ROYCHOUDHURY A., KARMAKAR S.K., Morphological and Kinematic Aspects of Human Spine – As Design Inputs for Developing Spinal Implants, J. Spine, 2013, 2(4), 138.
  • [4] BEHRSIN J.F., BRIGGS C.A., Ligaments of the lumbar spine: a review, Surg. Radiol. Anat., 1988, 10, 211–219.
  • [5] BORKOWSKI P., MAREK P., KRZESIŃSKI G., RYSZKOWSKA J., WAŚNIEWSKI B., WYMYSŁOWSKI P., ZAGRAJEK T., Finite element analysis of artificial disc with an elastomeric core in the lumbar spine, Acta Bioeng. Biomech., 2012, 14(1), 59–66.
  • [6] BRINCKMANN P., FROBIN W., LEIVSETH G., Musculoskeletal Biomechanics, Thieme, 2002.
  • [7] CHRISTOPHY M., FARUK SENAN N.A., LOTZ J.C., O’REILLY O.M., A Musculoskeletal model for the lumbar spine, Biomech. Model Mechanobiol., 2012, 11, 19–34.
  • [8] CHRISTOPHY M., CURTIN M., FARUK SENAN N.A., LOTZ J.C., O’REILLY O.M., On the modeling of the intervertebral joint in multibody models for the spine, Multibody Syst. Dyn., 2013, 30, 413–432.
  • [9] CIBERTA C., HUGEL V., Compliant intervertebral mechanism for humanoid backbone: Kinematic modeling and optimization, Mech. Mach. Theory, 2013, 66, 32–55.
  • [10] CLIN J., AUBIN C.É., PARENT S., LABELLE H., Biomechanical modeling of brace treatment of scoliosis: effects of gravitational loads, Med. Biol. Eng. Comput., 2011, 49(7), 743–753.
  • [11] CZYŻ M., ŚCIGAŁA K., BĘDZIŃSKI R., JARMUNDOWICZ W., Finite element modelling of the cervical spinal cord injury – clinical assessment, Acta Bioeng. Biomech., 2012, 14(4), 23–29.
  • [12] CZYŻ M., ŚCIGAŁA K., BĘDZIŃSKI R., JARMUNDOWICZ W., Numerical model of the human cervical spinal cord – the development and validation, Acta Bioeng. Biomech., 2011, 13(4), 51–58.
  • [13] DASGUPTA B., MRUTHYUNJAYA T.S., The Stewart platform manipulator: a review, Mech. Mach. Theory, 2000, 35, 15–40.
  • [14] DESROCHES G., AUBIN C.E., SUCATO D.J., RIVARD C.-H., Simulation of an anterior spine instrumentation in adolescent idiopathic scoliosis using a flexible multi-body model, Med. Bio. Eng. Comput., 2007, 45, 759–768.
  • [15] VAN DEURSEN D.L., LENGSFELD M., SNIJDERS C.J., EVERS J.J., GOOSSENS R.H., Mechanical effects of continuous passive motion on the lumbar spine in seating, J. Biomech., 2000, 33, 695–699.
  • [16] FILIPIAK J., PEZOWICZ C., Experimental investigation of durability of transpedicular screw – vertebra connection, Ortopedia, Traumatologia, Rehabilitacja, 2004, 6(2), 213–221.
  • [17] FRANCI R., PARENTI-CASTELLI V., Spatial mechanisms for modeling the human ankle passive motion, The University of Bologna, 2009.
  • [18] GAO B., SONG H., ZHAO J., GUO S., SUN L., TANG Y., Inverse kinematics and workspace analysis of a cable-driven parallel robot with a spring spine, Mech. Mach. Theory, 2014, 76, 56–69.
  • [19] GOHARI E., NIKKHOO M., HAGHPANAHI M., PARNIANPOUR M., Analysis of different material theories used in a FE model of a lumbar segment motion, Acta Bioeng. Biomech., 2013, 15(2), 33–41.
  • [20] GRISKEVICIUS J., LINKEL A., PAUK J., Research of cyclist’s spine dynamical model, Acta Bioeng. Biomech., 2014, 16(1), 37–44.
  • [21] GROOD E.S., SUNTAY W.J., A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee, J. Biomech. Eng., 1983, 105(2), 136–144.
  • [22] GUDAVALLI M.R., TRIANO J., An Analytical Model of Lumbar Motion Segment in Flexion, J. Manipulative Physiol. Ther., 1999, 22(3), 201–208.
  • [23] HAKALO J., PEZOWICZ C., WROŃSKI J., BĘDZIŃSKI R., KASPROWICZ M., The process of subsidence after cervical stabilizations by cage alone, cage with plate and plate-cage. A biomechanical comparative study, Neurologia I Neurochirurgia Polska, 2007, 41(5), 411–416.
  • [24] HAN K.S., ZANDER T., TAYLOR W.R., ROHLMANN A., An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces, Med. Eng. Phys., 2012, 34, 709–716.
  • [25] LIANG C., CECCARELLI M., Design and simulation of a waist– trunk system for a humanoid robot, Mech. Mach. Theory, 2012, 53, 50–65.
  • [26] NIGHTINGALE R.W., CAMACHO D.L., ARMSTRONG A.J., ROBINETTE J.J., MYERS B.S., Inertial properties and loadingrates affect buckling modes and injury mechanisms in the cervical spine, J. Biomech., 2000, 33, 191–197.
  • [27] PAWLIKOWSKI M., SKALSKI K., SOWIŃSKI T., Hyper-elastic modelling of intervertebral disc polyurethane implant, Acta Bioeng. Biomech., 2013, 15(2), 43–50.
  • [28] PETIT Y. et al., Patient-specific mechanical properties of a flexible multi-body model of the scoliotic spine, Med. Biol. Eng. Comput., 2004, 42, 55–60.
  • [29] SANCISI N., PARENTI-CASTELLI V., A 1-Dof parallel spherical wrist for the modelling of the knee passive motion, Mech. Mach. Theory, 2010, 45(4), 658–665.
  • [30] SANCISI N., PARENTI-CASTELLI V., A new approach for the dynamic modelling of the human knee, University of Bologna, 2008.
  • [31] TENG T.-L., CHANGB F.-A., LIUC Y.-S., PENGD C.-P., Analysis of dynamic response of vehicle occupant in frontal crash using multibody dynamics method, Math. Comput. Model, 2008, 48, 1724–1736.
  • [32] VACAS F.G., JUANCO F.E., DE LA BLANCA A.P., NOVOA M.P., POZO S.P., The flexion–extension response of a novel lumbar intervertebral disc prosthesis: A finite element study, Mech. Mach. Theory, 2014, 73, 273–281.
  • [33] VALENTINI P.P., Modeling human spine using dynamic spline approach for vibrational simulation, J. Sound Vib., 2012, 331, 5895–5909.
  • [34] WHITE A., PANJABI M., Clinical Musculoskeletal Biomechanics of the Spine, Lippincott Williams & Wilkins, 1990.
  • [35] WILLEMS J.M., JULL G.A., J K.F., An in vivo study of the primary and coupled rotations of the thoracic spine, Clin. Biomech., 1996, 11(6), 311–316.
  • [36] WOLAŃSKI W., TEJSZERSKA D., Biomechanical analysis of the cervical spine in situation when stabilisation was applied, Modelowanie Inżynierskie, 2009, 38, 295–300.
  • [37] DE ZEE M., HANSEN L., WONG C., RASMUSSEN J., SIMONSEN E.B., A generic detailed rigid-body lumbar spine model, J. Biomech., 2007, 40, 1219–1227.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62001dfd-c284-45a7-a88b-4eed4204f0e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.