PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear Degenerate Fractional Evolution Equations with Nonlocal Conditions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate the unique solvability of a class of nonlinear nonlocal differential equations associated with degenerate linear operator at the fractional Caputo derivative. For the main results, we use the theory of fractional calculus and (L, p)-boundedness technique that based on the analysis of both strongly (L, p)-sectorial operators and strongly (L, p)-radial operators. The obtained results are applicable to degenerate fractional Cauchy and Showalter–Sidorov problems in Banach spaces. Finally, we give an application described by time-fractional order Oskolkov system.
Wydawca
Rocznik
Strony
473--485
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • Laboratory of Mathematics, Department of Mathematics, University of Badji, Mokhtar 23000, Annaba, Algeria
autor
  • Department of Mathematics, Guelma University, Guelma 24000, Algeria
Bibliografia
  • [1] Favini A, Yagi A. Degenerate Differential Equations in Banach Spaces. Marcel Dekker Inc.: New York, Basel, Hong Kong, 1999. ISBN: 0824716779, 9780824716776.
  • [2] Sviridyuk GA, Fedorov VE. Linear Sobolev Type Equations a Degenerate Semigroups of Operators. VSP: Utrecht, Boston, 2003. doi: 10.1515/9783110915501.
  • [3] Federov VE, Debbouche A. A class of degenerate fractional evolution systems in Banach spaces. Differential Equations 2013; 49: 1569-1576. doi: 10.1134/S0012266113120112.
  • [4] Fedorov VE, Gordievskikh DM. Resolving operators of degenerate evolution equations with fractional derivative with respect to time. Russian Math. 2015; 59: 60-70. doi: 10.3103/S1066369X15010065.
  • [5] Fečkan M, Wang J, Zhou Y. Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators. J. Optim. Theory Appl. 2013; 156 (1): 79-95. doi: 10.1007/s10957-0112-01-7.
  • [6] Wang J, Fečkan M, Zhou Y. Controllability of Sobolev type fractional evolution systems. Dynamics of Partial Differential Equations 2014; 11: 71-87. doi: dx.doi.org/10.4310/DPDE.2014.v11.n1.a4.
  • [7] Xinwei Y, Zhichun Z. Well-posedness for fractional NavierStokes equations in the largest critical spaces. Methods in the Applid Sciences 2012; 35: 6796-683. doi: 10.1002/mma.2935.
  • [8] Yi-Fei P, Siarry P, Ji-Liu Z, Ni Z. A fractional partial differential equation based multiscale denoising model for texture image. Math. Methods in the Applid Sciences 2014; 37: 1784-1806. doi: 10.1002/mm.2935.
  • [9] Saha Ray S. A novel method for travelling wave solutions of fractional Whitham-Broer-Kaup, fractional modified Boussinesq and fractional approximate long wave equatin shallow water. Math. Methods in the Applied Sciences 2015; 38: 1352-1368. doi: 10.1002/mma.3151.
  • [10] Fedorov VE, Davydov PN. On nonlocal solutions of semilinear equations of the Sobolev type. Differential Equations 2013; 49: 338-347. doi: 10.1134/S0012266113030087.
  • [11] Fedorov VE, Davydov PN. Semilinear degenerate evolution equations and nonlinear systems of hydrodynamics type. Trudy Instituta Matematiki i Mekhaniki 2013; 19: 267-278. (In Russian).
  • [12] Plekhanova MV. Nonlinear equations with degenerate operator at fractional Caputo derivative. Mathematical Methods in the Applied Sciences 2016; in press. doi: 10.1002/mma.3830. Plekhanova M.V., Quasilinear equations that arenot solved for the higher-order time derivative. Siberian Mathematical Journal 2015; 56 (4): 725-735. doi: 10.17377/smzh.2015.56.414.
  • [13] Gorddievskikh DM, Fedorov VE. Solutions for initial boundary value problems for some degenerate equations systems of fractional order with respect to the time. The Bulletin of Irkutsk State University. Series Mathematics 2015; 12: 12-22. URL http://mi.mathnet.ru/eng/iigum/v12/p12.
  • [14] Oskolkov AP. Initial bounded value problems for motion equations of Kelvin-Voight and Oldroyd fluids. Proceeding of the Steklov Institute of Mathematics 1988; 179: 137-182. URL http://www.ams.org/mathscinet-getitem?mr=964916.
  • [15] Zvyagin VG, Turbin MV. The study of initial-bounded value problems for mathematical models of motion of Kelvin-Voight fluids. J. of Math. Science 2010; 168 (2): 157-308. URL http://dx.doi.org/10.1007/s10958-010-9981-2.
  • [16] Bajlekova EG. Fractional Evolution Equations in Banach Spaces. PhD thesis, Eindhoven University of Technology, University Press Facilities, 2001. SIAM J. Math. Anal. 1975; 6: 25-42. doi: 10.1137/0506004.
  • [17] Showalter RE. Nonlinear degenerate evolution equations and partial differential equations of mixed type. SIAM J. Math. Anal. 1975; 6: 25-42. doi: 10.1137/0506004.
  • [18] Sidorov NA. A class of degenerate differential equation with convergence. Math. nOTES 1984; 35: 300-305. doi: 10.1007/BF01139992.
  • [19] Ivanova ND, Fedorov VE, Komarova KM. Nonlinear inverse problem for Oskolkov system linearized in a neighborhood of a stationary solution. Vestnik Chelyad. Gos. Univ. Matematika. Mekhanika. Informatika 2012; 15: 49-70. (In Russia).
  • [20] Debbouche A, Baleanu D. Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems. Comput. Math. Appl. 2011; 62 (3): 14421450. URL http://dx.doi.org/10.1016/j.camwa.2011.03.075.
  • [21] Debbouche A, Baleanu D, Agarwal RP. Nonlocal nonlinear integrodifferential equations of fractional orders. Boundary Value Prob. 2012; 78: 1-10. doi: 10.1186/1687-2770-2012-78.
  • [22] Debbouche A, Nieto JJ, Torres DFM. Optimal Solutions to Relaxation in Multiple Control Problems of Sobolev Type with Nonlocal Nonlinear Fractional Differential Equations. Journal of Optimization Theory and Applications 2015; l-25. doi: 10.1007/s10957-015-0743-7.
  • [23] Wang S, Yang M, Zhang Y, Li J, Zou L, Lu S, Liu B, Yang J, Zhang Y. Detection of Left-Sided and Right-Sided Hearing Loss via Fractional Fourier Transform. Entropy 2016; 18 (5): 194. doi: 10.3390/e18050194.
  • [24] Zhang Y, Sun Y, Phillips P, Liu G, Zhou X, Wang S. A Multilayer Perceptron Based Smart Pathological Brain Detection System by Fractional Fourier Entropy. Journal of medical systems 2016; 40 (7): 1-11. doi: 10.1007/s10916-016-0525-2.
  • [25] Wang JR, Zhou Y, Fečkan M. Nonlinear impulsive problems for fractional differential equations and Ulam stability. Computers & Mathematics with Applications 2012; 64 (10): 3389-3405. doi: 10.1016/j.camwa.2012.02.021.
  • [26] Wang JR, Fečkan M, Zhou Y. Ulam’s type stability of impulsive ordinary differential equations. Journal of Mathematical Analysis and Applications 2012; 395 (l): 258-264. doi: 10.1016/j.jmaa.2012.05.040.
  • [27] Wang JR, Zhou Y, Fečkan M. On recent developments in the theory of boundary value problems for impulsive fractional differential equations. Computers & Mathematics with Applications 2012; 64 (10): 3008-3020. URL http://dx.doi.org/10.1016/j.camwa.2011.12.064.
Uwagi
Pod numerem 12. bibliografii umieszczono dwie pozycje zamiast jednej.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61ff157d-535e-4564-8afa-3076c4e17496
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.