PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The unipore and bidisperse diffusion models for methane in hard coal solid structures related to the conditions in the Upper Silesian Coal Basin

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The safety of mining operations in hard coal mines must be constantly developed and improved. There is ongoing multi-directional research focused at best recognition of the phenomenon associated with the properties of the coal-gas system and its connections with mining and geological conditions. This article presents the results of sorption experiments on coals from the Upper Silesian Coal Basin, which are characterized by varying degrees of coalification. One of the parameters that describes the kinetics of methane sorption, determining and providing valuable information about gas hazard and in particular the risk of gas and rock outbursts, is the effective diffusion coefficient De. It is derived from the solution of Fick’s second law using many simplifying assumptions. Among them is the assumption that the carbon matrix consists of only one type of pore-micropores. In fact, there are quite often at least two different mechanisms, which are connected to each other, related to the diffusion of methane from the microporous matrix and flows occurring in voids and macropores. This article presents both the unipore and bidisperse models and a set of comparisons which fit them to experimental curves for selected coals. For some samples the more complex bidisperse model gave much better results than the classic unipore one. The supremacy of the bidisperse model could be associated with the differences in the coal structure related to the coalification degree. Initial results justify further analyses on a wider set of coals using the methodology developed in this paper.
Rocznik
Strony
591--603
Opis fizyczny
Bibliogr. 30 poz., fot., rys., tab., wykr.
Twórcy
  • Central Mining Institute, 1 Gwarków Sq., 40-166 Katowice, Poland
  • Strata Mechanics Research Institute Polish Academy of Sciences, 27 Reymonta Str., 30-059 Krakow, Poland
  • Silesian University of Technology, 2a Akademicka Str., 44-100 Gliwice, Poland
Bibliografia
  • [1] Bukowska M., Senetra U., Wadas M., 2012. Chronostratigraphic and Depth Variability of Porosity and Strength of Hard Coals in the Upper Silesian Basin. Gospodarka Surowcami Mineralnymi 28, 4, 151-166.
  • [2] Busch A., Gensterblum Y., Krooss B.M., Littke R., 2004. Methane and carbon dioxide adsorption-diffusion experiments on coal: upscaling and modeling. International Journal of Coal Geolog 60, 151-168.
  • [3] Ceglarska-Stefańska G., Brzóska K., 1998. The effect of coal methamorphism on methane desorption. Fuel 77, 6, 645-648.
  • [4] Ceglarska-Stefańska G., Zarębska K., 2006. Sorpcja CO2 i CH4 na niskozwęglonych węglach z KWK Brzeszcze. Karbo 1, 31-35.
  • [5] Chruściel Z., 1986. Zdolność odbicia światła witrynitu polskich węgli kamiennych i jej korelacja z innymi wskaźnikami stopnia uwęglenia. Przegląd Górniczy 12, 547-551.
  • [6] Clarkson C.R., Bustin R.M., 1999. The effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study. 2. Adsorption rate modeling. Fuel 78, 1345-1362.
  • [7] Crank J. A, 1948. Diffusion problem in which the amount of diffusing substance is finite. II. Diffusion with nonlinear absorption. Philosophical Magazine 39, 140-149.
  • [8] Crank J., The Mathematics of Diffusion. 2nd ed. Oxford University Press, London, 1975, 414.
  • [9] Crosdale P.J., Beamish B.B., Valix M., 1998. Coalbed methane sorption related to coal composition. International Journal of Coal Geology 35, 147-158.
  • [10] Cui X., Bustin R.M., Dipple G., 2004. Selective transport of CO2, CH4, and N2 in coals: insights from modeling of experimental gas adsorption data. Fuel 83, 293-303.
  • [11] Dang W., Zhang J., Wei X., Tang X., Wang Ch., Chen Q., Lei Y., 2017. Methane Adsorption Rate and Diffusion Characteristics in Marine Shale Samples from Yangtze Platform, South China. Energies 10, 626, 1-23.
  • [12] Dutka B., 2017. Wpływ stopnia uwęglenia średnio zmetamorfizowanych węgli kamiennych na kinetykę sorpcji metanu. Prace Instytutu Mechaniki Górotworu PAN 19, 4, 21-27.
  • [13] Hobler T., 1976. Dyfuzyjny ruch masy i absorbery. Wydawnictwo Naukowo-Techniczne, Warszawa.
  • [14] Keshavarz A., Sakurovs R., Grigore M., Sayyafzadeh M., 2017. Effect of maceral composition and coal rank on gas diffusion in Australian coals. International Journal of Coal Geology 173, 65-75.
  • [15] Krause E., Smoliński A., 2005. Analiza i ocean parametrów kształtujących zagrożenie metanowe w rejonach ścian. Journal of Sustainable Mining 12, 1, 13-19.
  • [16] Laxminarayana C., Crosdale P.J., 1999. Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals. International Journal of Coal Geology 40, 309-325.
  • [17] Laxminarayana C., Crosdale P.J., 2002. Controls on methane adsorption capacity of Indian coals. AAPG Bulletin 86, 2, 201-212.
  • [18] Li Ch., Nie Y., Tian J., Zhao Y., Zhang X., 2019. The Impact of Equilibrium Gas Pressure and Coal Particle Size on Gas Dynamic Diffusion in Coal. Processes 7, 571, 1-21.
  • [19] Li D., Liu Q., Weniger P., Gensterblum Y., Bush A., Krooss B.M., 2010. High-pressure sorption isotherms and sorption kinetics of CH4 and CO2 on coals. Fuel 89, 3, 569-580.
  • [20] Mianowski A., Marecka A., 2009. The isokinetic effect as related to the activation energy for the gases diffusion in coal at ambient temperatures. Journal of Thermal Analysis and Calorimetry 96, 285-292.
  • [21] Olajossy A., 2013. On the effects of maceral content on methane sorption capacity in coals. Archives of Mining Sciences 58, 4, 1221-1228.
  • [22] Pan Z., Connell L.D., Camilleri M., Connelly L., 2010. Effects of matrix moisture on gas diffusion and flow in coal. Fuel 89, 3207-3217.
  • [23] Pillalamarry M., Harpalani S., Liu S., 2011. Gas Diffusion behavior of coal and its impact on production from coalbed methane reservoirs, International Journal of Coal Geology 86, 342-348.
  • [24] PN-G-97002:2018-11. Węgiel kamienny – Klasyfikacja – Typy.
  • [25] Ruckenstein E., Vaidyanathan A.S., Youngquist G.R., 1971. Sorption by solids with bidysperse pore structure. Chemical Engineering Science 26, 1305-1318.
  • [26] Szlązak J., 2013. Wpływa zagrożeń naturalnych na bezpieczeństwo pracy w kopalniach, [The influence of natural hazards on work safety in mines]. Górnictwo i Geologia, Wydawnictwo Politechniki Śląskiej 8, 1, 113-123.
  • [27] Timofiejew D.P., 1967. Adsprptionskinetik, Lipsk VEB.
  • [28] Wierzbicki M., Skoczylas N., 2010. Wybrane sposoby określania efektywnego współczynnika dyfuzji na podstawie przebiegów kinetyki nasycania/uwalniania gazu z próbki węglowej. Prace Instytutu Mechaniki Górotworu PAN 12, 1-4, 43-50.
  • [29] Wierzbicki M., Skoczylas N., Kudasik M., 2017. The use of a unipore diffusion model to describe the kinetics of methane release from coal spoil in the longwall environment. Studia Geotechnica et Mechanica 39, 2, 81-89.
  • [30] Xiaojun C., Chikatamarala L., Bustin R.M., 2004. Implication of volumetric swelling/shrinkage of coal in sequestration of acid gases. International Coalbed methane symposium Tuscaloosa, Alabama 0435, 22.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61fa37b9-bf42-48b0-a644-6eb778574c5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.