PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of structural performance of historical Amasya Hundi Hatun Bridge

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bridges have been built by many civilizations throughout history to connect the two banks of a river. There have been numerous historical bridges built in Anatolian geography because the area has served as a bridge to various civilizations. This study performed a structural evaluation of the Hundi Hatun Bridge in Amasya, Turkey. First, a 3D model of the bridge was created in a digital environment, and then static and dynamic analyses were performed with software using the ANSYS Workbench finite element method. The bridge demonstrated sufficient dimensions under static loads and in the modal analysis, although the arches were subject to translational movement in the flow direction of the river. In addition, linear and nonlinear material models were used to perform dynamic analyses, including bridge seismic analyses. The linear material model indicated that the bridge is safe, while the nonlinear material model revealed that damage may occur, especially at the abutments and peak regions of the bridge. Moreover, the bridge arch flatness was determined to be a very important parameter. The results of this study can be used to guide future restoration efforts.
Rocznik
Strony
109--120
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
  • Associate Prof.; Faculty of Architecture, Amasya University, Amasya, Turkey
  • Associate Prof.; Faculty of Architecture, Amasya University, Amasya, Turkey
Bibliografia
  • [1] N. Ademovic. (2016). Structural repair of Careva Cuprija Bridge in Sarajevo. Gradevinar, 68(12), 995-1008.
  • [2] N. Ademovic, & A. Kurtovic, (2018). Seismic performance and retrofit of a historic monument arch bridge. Paper presented at the 16th European Conference on Eartquake Engineering 16ECEE, Thessaloniki Greece.
  • [3] A. Akhaveissy, A. Permanoon, & R. Raeisi. (2021). Numerical modeling of masonry wall under under-ground waves. Scientia Iranica. 28(6), 2987-3007, doi: doi: 10.24200/sci.2021.53605.3327
  • [4] A. H. Akhaveissy. (2011). Lateral strength force of URM structures based on a constitutive model for interface element. Latin American Journal of Solids and Structures, 8(4), 445-461.
  • [5] A. Alkan, O. Baykan, A. Atalay, N. Baykan, & Ü. S. Öziş. (2011, 16-18 Eylül 2011). Su Yapısı Olarak Anadolu’daki Taş Köprüler (Masonry Bridges in Anatolia as a Water Structure). Paper presented at the II. Su Yapıları Sempozyumu, Diyarbakır, Türkiye.
  • [6] A. C. Altunisik, B. Kanbur, & A. F. Genc. (2015). The effect of arch geometry on the structural behavior of masonry bridges. Smart Structures and Systems, 16(6), 1069-1089, doi: 10.12989/sss.2015.16.6.1069
  • [7] ANSYS. (2015). Inc. Products Release 17.0, Finite element analysis program. USA.
  • [8] S. Ataei, M. Jahangiri Alikamar, & V. Kazemiashtiani. (2016). Evaluation of axle load increasing on a monumental masonry arch bridge based on field load testing. Construction and Building Materials, 116, 413-421, doi: 10.1016/j.conbuildmat.2016.04.126
  • [9] T. T. Bui, A. Limam, & Q. B. Bui. (2014). Characterisation of vibration and damage in masonry structures: Experimental and numerical analysis. Eur. J. Environ. Civ. Eng., 18(10), 1118-1129.
  • [10] F. Cakir, & B. Seker. (2015). Structural Performance of Renovated Masonry Low Bridge in Amasya, Turkey. Earthquakes and Structures, 8(6), 1387-1406, doi: 10.12989/eas.2015.8.6.1387
  • [11] Z. Celep. (2017). Deprem Mühendisliğine Giriş ve Deprem Dayanıklı Yapı Tasarımı (Introduction to Earthquake Engineering and Earthquake Resistant Structure Design). Istanbul:Beta Yayınları.
  • [12] C. Çulpan. (2002). Türk Taş Köprüleri, Ortaçağdan Osmanlı Devri Sonuna Kadar (Turkish Masonry Bridges, From the Middle Ages to the End of the Ottoman Period). Ankara:Türk Tarih Kurumu Basımevi.
  • [13] K. D. Dalgıç, (2010). Düşük Elastisite Modüllü Cam Lifli Polimerle Sargılanmış Düşük Dayanımlı Betonun Eksenel Yükler Altında Davranışı ve Sonlu Eleman Metodu ile Analizi (Behavior of Low Strength Concrete Wrapped with Low Modulus Glass Fiber Polymer Under Axial Loads and Analysis by Finite Element Method). Master Thesis (in Istanbul), ITÜ, Turkey.
  • [14] T. Karabörk, T. Çelik, & A. Ural, (2016). Finite element analyses of historical Bıçakçı arch bridge, Turkey. Paper presented at the 8th International Conference on Arch Bridges ARCH2016, Wroclaw Poland.
  • [15] M. Karaton, H. S. Aksoy, E. Sayın, & Y. Calayır. (2017). Nonlinear seismic performance of a 12th century historical masonry bridge under different earthquake levels. Engineering Failure Analysis, 79, 408-421, doi: 10.1016/j.engfailanal.2017.05.017
  • [16] A. Kindij, A. M. Ivankovic, & M. Vasilj, (2013). Assessment of masonry arch bridge with concrete deck. Paper presented at the 7th International Conference on Arch Bridges, ARCH’13, Trogir-Split, Crotia.
  • [17] G. Lacidogna, & F. Accornero. (2018). Elastic, plastic, fracture analysis of masonry arches: A multi-span bridge case study. Curved and Layered Structures, 5(1), 1-9, doi: 10.1515/cls-2018-0001
  • [18] B. M., G. L., & V. A. (2015). Time-History Seismic Analysis of Masonry Buildings: A Comparison between Two Non-Linear Modelling Approaches. Buildings, 5(2), 597-621, doi: 10.3390/buildings5020597
  • [19] D. Malomo, R. Pinho, & A. Penna. (2018). Using the applied element method for modelling calcium silicate brick masonry subjected to in-plane cyclic loading. Earthquake Engineering and Structural Dynamics, 47, 1610-1630, doi: 10.1002/eqe.3032
  • [20] D. V. Oliveira, & P. B. Lourenço, (2004). Repair of Masonry Arch Bridges. Paper presented at the Arch Bridges ARCH’04, Barselona.
  • [21] D. V. Oliveira, & P. B. Lourenço, (2006). Repair of a historical stone masonry arch bridge. Paper presented at the The Third International Conference on Bridge Maintenance.
  • [22] D. V. Oliveira, P. B. Lourenço, & C. Lemos. (2010). Geometric issues and ultimate load capacity of masonry arch bridges from the northwest Iberian Peninsula. Engineering Structures, 32(12), 3955-3965, doi: 10.1016/j.engstruct.2010.09.006
  • [23] A. Özmen, & E. Sayın. (2018). Seismic assessment of a historical masonry arch bridge. Journal of Structural Engineering & Applied Mechanics, 1(2), 95-104, doi: 10.31462/jseam.2018.01095104
  • [24] A. Özmen, & E. Sayın, (2018). Seismic Behaviour of Mavilik Masonry Arch Bridge. Paper presented at the International Engineering and Natural Sciences Conference INESEG, Diyarbakır, Turkey.
  • [25] A. Özmen, E. Sayın, (2018). & Linear Dynamic Analysis of a Masonry Arch Bridge. Paper presented at the International Conference on Innovative Engineering Applications CIEA’2018, Sivas, Turkey.
  • [26] A. Paeglītis, A. Paeglītis, I. Vītiņa, & S. Igaune. (2013). Study and Renovation of Historical Masonry Arch Bridge. The Baltic Journal of Road and Bridge Engineering, 8(1), 32-39, doi: 10.3846/bjrbe.2013.05
  • [27] B. Riveiro, J. Armesto, P. Arias, & F. Rial. (2008). Multidisciplinar aproach to historical arch bridges documentation. Int Arch Photogramm Remote Sens Spat Inf Sci, 247-252.
  • [28] T. S., & M. G. (2017). Historic City Centers After Destructive Seismic Events, The Case of Finale Emilia During the 2012 Emilia-Romagna Earthquake: Advanced Numerical Modelling on Four Case Studies. Open Civil Engineering, 11(1), 1059-1078.
  • [29] E. Sayın, & M. Y. Karaton, (2011). Nonlinear seismic analysis of historical Uzunok bridge. Paper presented at the 7. Uusal Deprem Mühendisliği Konferansı, İstanbul, Turkey.
  • [30] M. E. Stavroulaki, (2008). Parametric Finite Element Analysis of Masonry Structures Using Different Constitutive Models. Paper presented at the In 6th GRACM International Congress on Computational Mechanics, Thessaloniki, Greece.
  • [31] B. Ş. Şeker, & M. Gökçe. (2021). Tarihi Hundi Hatun (Kunç) Köprüsünün Artan Trafik Yükü Altında Davranışının İncelenmesi (Investigation of Historical Hundi Hatun (Kunç) Bridge’s Behavior Under Increasing Traffic Load). International Journal of Engineering Research and Development, 13(2), 496-507, doi: doi: 10.29137/umagd.823912
  • [32] Ş. Şeker. (2020). Author Archive.
  • [33] M. E. Tomazevic. (1999). Earthquake-Resistant Design of Masonry Buildings. London:Imperial College Press.
  • [34] G. Urak, (1994). Amasya’nın Türk Devri Şehir Dokusu ve Yapılarının Analiz ve Değerlendirilmesi (Analysis and Evaluation of Amasya’s Turkish Period Urban Texture and Structures). PhD Thesis (in Ankara), Gazi University, Turkey.
  • [35] URL-1. Anonymous. (2002). Retrieved 06.10.2020, from https://2.bp.blogspot.com/-3nL2NZ9-BCs/XFR74UqyhKI/AAAAAAAAuys/5s_pHnBf8dMDj9lcpDFtsebkl_GgcV4mQCLcBGAs/s1600/amas ya_merkez.jpg
  • [36] URL-2. Johnson and Stern. (2010). from https://africa-arabia-plate.weebly.com/arabian-plate.html
  • [37] URL-3. Disaster and Emergency Management Presidency Department of Earthquake. (2020) Retrieved 06.10.2020, from http://kyhdata.deprem.gov.tr
  • [38] URL-4. T. R. General Directorate of Foundations. (2017). Tarihi Yapılar Için Deprem Risklerinin Yönetimi Kılavuzu (Earthquake Risk Management Guide for Historic Buildings). Retrieved 06.10.2020, from https://cdn.vgm.gov.tr/organizasyon/organizasyon12_030619/kilavuz.pdf
  • [39] URL-5. Anonymous. (2017). Retrieved 06.10.2020, from https://www.youtube.com/watch?v=FE5TnbedRuo
  • [40] P. Zampieri, M. A. Zanini, F. Faleschini, L. Hofer, & C. Pellegrino. (2017). Failure analysis of masonry arch bridges subject to local pier scour. Engineering Failure Analysis, 79, 371-384. doi: 10.1016/j.engfailanal.2017.05.028
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61f2da5b-b6a5-4bfd-80c7-575511420eca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.