PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of an influence of liquid velocity above the needle on the bubble departures process

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper, the influence of liquid flow above the needle on a periodic or chaotic nature of the bubble departures process was numerically investigated. During the numerical simulations bubbles departing from the needle was considered. The perturbations of liquid flow were simulated based on the results of experimental investigations described in the paper [1]. The numerical model contains a bubble growth process and a liquid penetration into a needle process. In order to identify the influence of liquid flow above the needle on a periodic or chaotic nature of bubble departures process, the methods data analysis: wavelet decomposition and FFT were used. It can be inferred that the bubble departure process can be regulated by altering the hydrodynamic conditions above the needle, as variations in the liquid velocity in this area affect the gas supply system's conditions. Moreover, the results of numerical investigations were compared with the results of experimental investigation which are described in the paper [2]. It can be considered that, described in this paper, the numerical model can be used to study the interaction between the bubbles and the needle system for supplying gas during the bubble departures from two needles, because the interaction between the bubbles is related to disturbances in the liquid flow above the needle.
Rocznik
Strony
403--408
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.,
Twórcy
  • Faculty of Mechanical Engineering, Białystok University of Technology, ul. Wiejska 45C, 15-351 Białystok, Poland
Bibliografia
  • 1. Dzienis P, Mosdorf R. Liquid pressure fluctuations around a needle during bubble departures. Meccanica. 2023;58:1307-1313.
  • 2. Dzienis P, Golak K, Konopka M, Mosdorf R, Baziene K, Gargasas J. A hydrodynamic interaction between bubbles and gas supply system during gas bubble departures in liquids: an experimental study. Sci-entific Reports. 2023;13:17979.
  • 3. He Y, Zhang T, Lv L, Tang W, Wang Y, Zhou J, Tang S. Application of microbubbles in chemistry, wastewater treatment, medicine, cos-metics, and agriculture: a review. Environmental Chemical Let-ters.2023;21:3245–3271.
  • 4. Le TH, Phan AHT, Le KCM, Phan TDU, Nguyen KT.Utilizing poly-mer-conjugate albumin-based ultrafine gas bubbles in combination with ultra-high frequency radiations in drug transportation and deliv-ery. RSC Advances.2021;11(55):34440–34448.
  • 5. Leifer I, Tang D. The acoustic signature of marine seep bubbles. The Journal of the Acoustical Society of America.2007;121:35–40.
  • 6. Boufadel MC, Socolofsky S, Katz J, Yang D, Daskiran C, Dewar W. A review on multiphase underwater jets and plumes: Droplets, hy-drodynamics, and chemistry, Reviews of Geophysics. 2023; 58:1–40.
  • 7. Abdulmouti H. Bubbly two-phase flow: III- applications, American Journal of Fluid Dynamics.2022;12(1):16–119.
  • 8. Gevod VS, Borisov IA. Influence of air bubble flow structure on the rate of water purification by the bubble-film extraction method, Water Supply 2019;19(8):2298–2308.
  • 9. Budzyński P, Gwiazda A, Dziubiński M. Intensification of mass transfer in a pulsed bubble column, Chemical Engineering Pro-cessing & Process Intensification. 2017;112:18-30.
  • 10. Suwartha N, Syamzida D, Priadi CR, Moersidik SS, Ali F. Effect of size variation on microbubble mass transfer coefficient in flotation and aeration processes. Heliyon.2020;6(4):e03748.
  • 11. Herrmann-Heber R, Reinecke SF, Hampel U. Dynamic aeration for improved oxygen mass transfer in the wastewater treatment process. Chemical Engineering Journal.2020;386:122068.
  • 12. Pan F, Mu L, He Y, Wang C, Zhou S. A thermal-hydrodynamic coupling method for simulating the interplay between bubble depar-ture and wall temperature variation in nucleate boiling, Journal of Hy-drodynamics. 2021; 33: 243–258.
  • 13. Yuan J, Ye X, Shan Y. Modeling of the bubble dynamics and heat flux variations during lateral coalescence of bubbles in nucleate pool boiling. International Journal of Multiphase Flow 2021;142:103701.
  • 14. Pan F, Mu L, He Y. Wang C. Numerical study on the activation of nucleation sites and bubble interactions in twin-bubble nucleate boil-ing, Proceedings of the Institution of Mechanical Engineers. Part C: Journal of Mechanical Engineering Science. 2022;236(12). doi.org/10.1177/09544062211065987
  • 15. Stanovsky P, Ruzicka M, Martins A, Teixeira J. Meniscus dynamics in bubble formation: A parametric study. Chemical Engineering Sci-ence. 2011;66:3258-3267.
  • 16. Dzienis P, Zaborowska I, Mosdorf R. JRP analysis of synchronization loss between signals recording during bubble departures. Nonlinear Dynamics. 2022;108:433–444.
  • 17. Mohseni E, Reinecke SF, Hampel U. Controlled bubble formation from an orifice through harmonic gas pressure modulation. Chemical Engineering Journal 2023. doi.org/10.1016/j.cej.2023.143953
  • 18. Cano-Lozano JC, Bolaños-Jiménez R, Gutiérrez-Montes C. Mar-tínez-Bazán C. On the bubble formation under mixed injection condi-tions from a vertical needle, International Journal of Multiphase Flows. 2017; 97:23–32.
  • 19. Dzienis P, Mosdorf R, Wyszkowski T. The dynamics of liquid move-ment inside the nozzle during the bubble departures for low air vol-ume flow rate. Acta Mechanica et Automatica.2012;6(3):31–36.
  • 20. Augustyniak J, Perkowski DM, Mosdorf R. Measurement of mul-tifractal character of bubble paths using image analysis, International Communication in Heat and Mass Transfer 2020;117: 104701.
  • 21. Zhang L, Shoji M. Aperiodic bubble formation from a submerged orifice, Chemical Engineering Science. 2001; 56: 5371–5381.
  • 22. Snabre P, Magnifotcham F. Formation and rise of a bubble stream in viscous liquid The European Physical Journal B. 1997; 4: 369–377.
  • 23. Feng X, Kunugi T, Qin S, Wu D. Flowrate effects on the lateral coalescence of two growing bubbles. The Canadian Journal of Chemical Engineering. 2023. doi.org/10.1002/cjce.24976
  • 24. Yuan J, Ye X, Shan Y. Modelling of double bubbles coalescence behaviour on different wettability walls using LBM method, Interna-tional Journal of Thermal Sciences. 2021; 168: 107037.
  • 25. Dzienis P, Mosdorf R, Wyszkowski T. A hydrodynamic criterion of alternative bubble departures, Thermal Science. 2021; 25(1B): 553-565.
  • 26. Capponi A, Llewellin EW. Experimental observations of bubbling regimes at in-line multi-orifice bubblers. International Journal of Mul-tiphase Flow. 2019; 114: 66–81.
  • 27. Padash A, Chen B, Boyce CM. Characterizing alternating bubbles emerging from two interacting vertical gas jets in a liquid. Chemical Engineering Science.2022; 248 Part B: 117199.
  • 28. Kazakis NA, Mouza AA, Paras SV. Coalescence during bubble formation at two neighbouring pores: an experimental study in micro-scopic scale, Chemical Engineering Science. 2008;63(21): 5160–5178.
  • 29. Legendre D, Magnaudet J, Mougin G. Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid, Journal of Fluid Mechanics. 2003; 497: 133–166.
  • 30. Sanada T, Sato A, Shirota MT, Watanabe M. Motion and coales-cence of a pair of bubbles rising side by side. Chemical Engineering Science. 2009; 64: 2659–2671.
  • 31. Ruzicka MC, Bunganic R, Drahoš J. Meniscus dynamics in bubble formation. Part II: Model. Chemical Engineering Research and Design. 2009; 87: 1357-1365.
  • 32. Dzienis P, Mosdorf R. Stability of periodic bubble departures at a low frequency. Chemical Engineering Science. 2014; 109: 171-182.
  • 33. Ravisankar M, Garcidueñas Correa A, Su Y, Zenit R. Hydrodynamic interaction of a bubble pair in viscoelastic shear-thinning fluids. Jour-nal of Non-Newtonian Fluid Mechanics. 2022;309:104912.
  • 34. Marwan N, Romano MC, Thiel M, Kurths J. Recurrence plots for the analysis of complex systems. Physics Reports. 2007;438: 237–329.
  • 35. Grassberger P, Procaccia I. Measuring the strangeness of strange attractors. Physica – D. 1983;9:189–208.
  • 36. Sen AK, Litak G, Taccani R, Radu R. Chaotic vibrations in a regen-erative cutting process, Chaos Solitons Fractals. 2008;38:886–893.
  • 37. Schuster HG. Deterministic Chaos. An Introduction. PWN. Warszawa 1993 (in Polish).
  • 38. Liebert W, Schuster HG. Proper choice of the time delay for the analysis of chaotic time series. Physics Letters A. 1989;142:107–111
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61f26387-8b2e-48f8-8ae0-3083129fc2e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.