Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aims of the study are to investigate compost quality (physic and chemistry) using black soldier fly (BSF) larvae composting compared with Indonesia standard (SNI) and assess whether compost quality is affected by the research variation. This study was conducted by research variations are raw material composition, addition of milk waste and vegetable waste local microorganism. The twelve reactors (larvero) have a dimension of 50 cm (length) × 40 cm (width) × 15 cm (height). This study uses mixtures of food waste added with various variable, including waste milk (WM), tofu dregs (TD), goat manure (GM) and self-made bioactivator of local organism (MoL). Total substrate of each larvero was 10 kg, added every third day and monitored ambient temperature, pH and water content. Carbon to nitrogen, phosphorus and potassium was measured in the final compos result. The result show all variable accordance with the Indonesia standard (SNI). However, the highest moisture content of 50–54% from TD added needs particular maintenance work challenging using advanced natural drying. WM treatment using BSF larvae composting with all variation research also resulting compost meet the SNI. Based on statistical analysis report, research variation that have an influence on the overall compost quality are MW and MoL addition.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
177--186
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
- Waste Treatment Engineering Study Program, Politeknik Perkapalan Negeri Surabaya, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
autor
- Waste Treatment Engineering Study Program, Politeknik Perkapalan Negeri Surabaya, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
autor
- Waste Treatment Engineering Study Program, Politeknik Perkapalan Negeri Surabaya, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
autor
- Waste Treatment Engineering Study Program, Politeknik Perkapalan Negeri Surabaya, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
autor
- Waste Treatment Engineering Study Program, Politeknik Perkapalan Negeri Surabaya, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
Bibliografia
- 1. Elkhalifa S., Al-Ansari T., Mackey H.R., McKay G. (2019). Food waste to biochars through pyrolysis: A review. Resour. Conserv. Recycl., 144, 310–320.
- 2. Gao A., Tian Z., Wang Z., Wennersten R., Sun Q. (2017). Comparison between the technologies for food waste treatment. Energy Proc 105:3915–3921. https://doi.org/10.1016/J.EGYPRO.2017.03.811
- 3. Ungyong C., Mustafa A.M., Lin H., Choe U., Sheng K. (2020). Anaerobic co-digestion of fish processing waste with a liquid fraction of hydrothermal carbonization of bamboo residue, Bioresource Technology, 297, https://doi.org/10.1016/j.biortech.2019.122542.
- 4. Karim N.U., Lee M.F.M.A., Arshad A.M. (2015). The effectiveness of fish silage as organic fertilizer on post-harvest quality of Pak choy (Brassica rapa L. subsp. chinensis). Eur. Int. J. Sci. Technol. 4, 163–174.
- 5. Toppe J., Olsen R.L., Peñarubia O.R. (2018). Production and utilization of fish silage. a manual on how to turn fish waste into profit and a valuable feed ingredient or fertilizer. FAO, Rome, 28.
- 6. Kazemi K., Zhang B., Lye L.M., Zhu Z. (2017). Evaluation of state and evolution of marine fish waste composting by enzyme activities. Can. J. Civ. Eng. 44, 348–357.
- 7. Apriani M., Cahyono L., Utomo A.P., Nugraha A.T., Cahya Ningrum A.D. (2022). Preliminary investigation of bioplastics from durian seed starch recovery using PEG 400 for reducing marine debris. Journal of Ecological Engineering. 23(2), 12–17. https://doi.org/10.12911/22998993/144824
- 8. Vaverková M.D., Adamcová D. (2015). Biodegrability of bioplastic materials in a controlled composting environment. Journal of Ecological Engineering.16(3), 155–160. https://doi.org/10.12911/22998993/2949
- 9. Rahmatullah R., Putri R.W., Komariah L.N., et al. (2024). The effect of plasticizer type and concentration on cellulose acetate-based bioplastic from durian skin. Journal of Ecological Engineering. 25(11), 70–82. https://doi.org/10.12911/22998993/192677
- 10. Busato J.G., de Carvalho C.M., Zandonadi D.B., Sodré F.F., Mol A.R., de Oliveira A.L., Navarro R.D. (2018). Recycling of wastes from fish beneficiation by composting: chemical characteristics of the compost and efficiency of their humic acids in stimulating the growth of lettuce. Environ. Sci. Pollut. Res. 25, 35811–35820.
- 11. Trivana L., Pradhana, A.Y. (June 2017). Optimalisasi waktu pengomposan dan kualitas pupuk kandang dari kotoran kambing dan debu sabut kelapa dengan bioaktivator PROMI dan orgadec. Jurnal Sain Veteriner, [S.l.], 35(1), 136–144 https://doi.org/10.22146/jsv.29301
- 12. Ortiz-Cornejo N.L., Romero-Salas E.A., Navarro-Noya Y.E., González-Zúñiga J.C., Ramirez-Villanueva D.A., Vásquez-Murrieta M.S., Verhulst N., Govaerts B., Dendooven L., Luna-Guido M., (2017). Incorporation of bean plant residue in soil with different agricultural practices and its effect on the soil bacteria. Appl. Soil Ecol 119, 417–427.
- 13. Zhang L., Sun X. (2018). Effects of bean dregs and crab shell powder additives on the composting of green waste. Bioresour. Technol 260, 283–293.
- 14. Ma Y., Khan M.Z., Xiao J., Alugongo G.M., Chen X., Li S., Wang Y. and Cao Z. (2022). An overview of waste milk feeding effect on growth performance, metabolism, antioxidant status and immunity of dairy calves. Front. Vet. Sci. 9, 898295. https://doi.org/10.3389/fvets.2022.898295
- 15. Aust V., Knappstein K., Kunz H.J., Kaspar H., Wallmann J., Kaske M. (2013). Feeding untreated and pasteurized waste milk and bulk milk to calves: effects on calf performance, health status and antibiotic resistance of faecal bacteria. J Anim Physiol Anim Nutr (Berl). 97, 1091–103. https://doi.org/10.1111/jpn.12019
- 16. Brunton L.A., Duncan D., Coldham N.G., Snow L.C., Jones J.R. (2012). A survey of antimicrobial usage on dairy farms and waste milk feeding practices in England and Wales. Veterinary Record. 171, 296. https://doi.org/10.1136/vr.100924
- 17. Anusha S., Paul P. (2015). Stabilization of sludge from AAVIN dairy processing plant (Chennai) using vermicomposting, J. Chem. Pharma. Res. 7(3), 846–851.
- 18. Desai N., Tanksali A., Soraganvi V.S. (2016). Vermicomposting – Solution for Milk Sludge, Procedia Environmental Sciences, 35, 441–449, https://doi.org/10.1016/j.proenv.2016.07.027
- 19. Dortmans, B., Diener, S., Bart, V. and Zurbrügg, C. (2017). Black soldier fly biowaste processing: a step-by-step guide. eawag.
- 20. Boaru A., Vig A., Ladoşi D., Păpuc T., Struţi D., Georgescu B. (2019). The use of various oviposition structures for the black soldier fly, Hermetia illucens L. (Diptera: Stratiomydae) in improving the reproductive process in captivity. Adv. Agric. Bot., 11, 12–20.
- 21. Astuti U.P., Setiani V., Apriani M., Dewi T.U., and Sulistiyo N. (2022). Tanjung Perak Port solid waste composting using black soldier fly method. Jurnal Presipitasi: Media Komunikasi dan Pengembangan Teknik Lingkungan, 19(3), 578–588. https://doi.org/10.14710/presipitasi.v19i3.578-588
- 22. Amrul N.F., Ahmad, I.K., Basri, N.E.A., Suja, F., Jalil, N.A.A., Azman, N.A. (2022). A review of organic waste treatment using black soldier fly (Hermetia illucens). Sustainability, 14, 4565. https://doi.org/10.3390/su14084565
- 23. Banks I.J., Gibson W.T., Cameron M.M. (2014). Growth rates of black soldier fly larvae fed on fresh human faeces and their implication for improving sanitation. Trop. Med. Int. Health 19(1), 14–22.
- 24. Aja O.C., Al-Kayiem H.H. 2014. Review of municipal solid waste management options in Malaysia, with an emphasis on sustainable waste-to-energy options. J Mater Cycles Waste 16(4), 693–710. https://doi.org/10.1007/s10163-013-0220-z
- 25. Bernal M.P., Alburquerque J.A., Moral R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour Technol 100(22), 5444–5453. https://doi.org/10.1016/j.biort ech.2008.11.027
- 26. Dortmans B. (2015). Valorisation of Organic Waste—Effect of the Feeding Regime on Process Parameters in a Continuous Black Soldier Fly Larvae Composting System. Master’s Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 38.
- 27. ˇCiˇcková H., Newton G.L., Lacy R.C., Kozánek M. (2015). The use of fly larvae for organic waste treatment. Waste Manag. 35, 68–80.
- 28. Pandebesie E.S., Warmadewanthi I., Wilujeng S.A., and Simamora M.S. (2022). Changes of nitrogen and organic compound during co-composting of disposable diaper and vegetable wastes on aerobic process. Journal of Ecological Engineering, 23(4), 228–234. https://doi.org/10.12911/22998993/144944
- 29. Waqas M., Hashim S., Humphries U.W., Ahmad S., Noor R., Shoaib M., Naseem A., Hlaing P.T., Lin H.A. (2023). Composting processes for agricultural waste management: A comprehensive review. Processes. 11(3), 731. https://doi.org/10.3390/pr11030731
- 30. Pang W., Hou D., Chen J., Nowar E., Li Z., Hu R., Tomberlin J.K., Yu Z., Li Q., Wang S. (2020). Reducing greenhouse gas emissions and enhancing carbon and nitrogen conversion in food wastes by the black soldier fly. J. Environ. Manag. 260, 110066. https://doi.org/10.1016/j.jenvman.2020.110066
- 31. Ahmad I.K., Peng N.T., Amrul N.F., Basri N.E.A., Jalil N.A.A., Azman N.A. (2023). Potential application of black soldier fly larva bins in treating food waste. Insects. 14(5), 434. https://doi.org/10.3390/insects14050434
- 32. Wei Z., Xi B., Zhao Y., Wang S., Liu H., Jiang Y. (2007). Effect of inoculating microbes in municipal solid waste composting on characteristics of humic acid, Chemosphere, 68(2), 368–374, https://doi.org/10.1016/j.chemosphere.2006.12.067
- 33. Diener S., Solano N.M.S., Roa Gutiérrez F. et al. (2011). Biological treatment of municipal organic waste using black soldier fly larvae. Waste Biomass Valor 2, 357–363 https://doi.org/10.1007/s12649-011-9079-1
- 34. Sarpong D., Oduro-Kwarteng S., Gyasi S.F., Buamah R., Donkor E., Yaw E., Botchway, E., Acquah S. (2018). Biodegradation of heterogeneous mixture of organic fraction of municipal solid waste by black soldier fly larvae (Hermetia Illucens) under the tropical climate conditions. International Journal of Innovative Science, Engineering & Technology, 5, 243–254.
- 35. Pan I., Dam B., Sen S.K. (2012). Composting of common organic wastes using microbial inoculants. 3 Biotech 2, 127–134. https://doi.org/10.1007/s13205-011-0033-5
- 36. Karunanithi R., Szogi A.A., Bolan N., Naidu R., Loganathan P., Hunt P.G., Krishnamoorthy S. (2015). Phosphorus recovery and reuse from waste streams Adv. Agron., 131, 173–250. https://doi.org/10.1016/bs.agron.2014.12.005
- 37. Xie S., Tran H.-T., Pu M., Zhang T. (2023). Transformation characteristics of organic matter and phosphorus in composting processes of agricultural organic waste: Research trends, Materials Science for Energy Technologies, 6, 331–342. https://doi.org/10.1016/j.mset.2023.02.006
- 38. Nguyen T.T., Sasaki Y., Nasukawa H., Katahira M. (2024). Recycling potassium from cow manure compost can replace potassium fertilizers in paddy rice production systems, Science of The Total Environment, 912, https://doi.org/10.1016/j.scitotenv.2023.168823
- 39. Sommer S.G. (2001). Effect of composting on nutrient loss and nitrogen availability of cattle deep litter. Eur J Agron 14, 123–133. https://doi.org/10.1016/S1161-0301(00)00087-3
- 40. Desai N., Tanksali A., Soraganvi V.S. (2016) Vermicomposting – solution for milk sludge, Procedia Environmental Sciences, 35, 441–449, https://doi.org/10.1016/j.proenv.2016.07.027
- 41. Wikurendra E.A., Nurika G., Herdiani N., Lukiyono Y.T. (2022). Evaluation of the commercial bio-activator and a traditional bio-activator on compost using Takakura method. Journal of Ecological Engineering, 23(6), 278–285. https://doi.org/10.12911/22998993/149303
- 42. Aslanzadeh S., Kho K., Sitepu I. (2020). An Evaluation of the Effect of Takakura and Effective Microorganisms (EM) as Bio Activators on the Final Compost Quality IOP Conf. Ser.: Mater. Sci. Eng. 742, 012017. https://doi.org/10.1088/1757-899X/742/1/012017
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61edf25d-2571-4b32-be7d-31f1971d3759
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.