PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Double enveloping worm gear modelling using CAD environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study describes the methodology for modelling a worm and worm wheel of a double enveloping worm gear with the use of a CAD system. An algorithm for generating a globoid helix is described. In addition, the methodology for modelling an hourglass worm thread with a straight axial tooth profile is presented. The shape of the hourglass worm tooth end with and without a trace modification is proposed. Moreover, a method for achieving a geometric modification of the tooth trace was developed. Next, the method for modelling the worm wheel teeth is described. A solid model of using a machining worm as a hob is applied. Owing to the limitations of a CAD system, which prevents the use of a direct machining simulation, an indirect modelling method is introduced. In the present study, different CAD techniques, both solid and surface, are applied. Knowledge of the correct modelling of the hourglass worm and worm wheel facilitates their generation and conducting various analyses, including a tooth contact analysis. CAD models are utilised to analyse the geometrical contact pattern in a CAD environment, to carry out FEM analysis, to manufacture real parts or to prototype models using the technique of rapid prototyping. They can be also used as master models for measurement, e.g. in optical technics.
Rocznik
Strony
art. no. e136736
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • Rzeszow University of Technology, The Faculty of Mechanical Engineering and Aeronautics, al. Powstanców Warszawy 12, 35-959 Rzeszow, Poland
  • Rzeszow University of Technology, The Faculty of Mechanical Engineering and Aeronautics, al. Powstanców Warszawy 12, 35-959 Rzeszow, Poland
  • Rzeszow University of Technology, The Faculty of Mechanical Engineering and Aeronautics, al. Powstanców Warszawy 12, 35-959 Rzeszow, Poland
Bibliografia
  • [1] I. Dudas, The theory and practice of worm gear drives, Penton Press, London, 2000.
  • [2] W.P. Crosher, Design and Application of the Worm Gear, ASME Press, New York, 2002.
  • [3] F.L. Litvin, Development of Gear Technology and Theory of Gearing, NASA, Levis Research Center, 1999.
  • [4] F.L. Litvin and A. Fuentes, Gear Geometry and Applied Theory, Cambridge University Press, 2004.
  • [5] L. Dudás, “New technology for manufacturing quasi-globoid worm gearings”, Mater. Sci. Eng. 448, 012035 (2018).
  • [6] Y. Chen, Y. Chen, W. Luo, and G. Zhang, “Development and Classification of Worm Drive”, The 14th IFToMMWorld Congress in Taiwan, 2015.
  • [7] V. Simon, “Double Enveloping Worm Gear Drive with Smooth Gear Tooth Surface”, in Proc. Int. Conf. on Gearing, Zhengzhou, China, 1988, pp. 191‒194.
  • [8] V. Simon, “A New Type of Ground Double Enveloping Worm Gear Drive”, in Proc. ASME 5th Int. Power Transm. and Gearing Conf., Chicago, 1989, pp.281‒288.
  • [9] V. Simon, “Load Distribution in Double Enveloping Worm Gears”, J. Mech. Des. 115, 496‒501 (1993).
  • [10] V. Simon, “Characteristics of a Modified Double Enveloping Worm Gear Drive”, in Proc. 6th Int. Power Transm. and Gearing Conf., Scottsdale, 1992, pp. 73‒79.
  • [11] Y. Zhao and Y. Zhang, “Novel methods for curvature analysis and their application to TA worm”, Mech. Mach. Theory. 97, 155‒170 (2016).
  • [12] Y. Zhao and Y. Zhang, “Computing method for induced curvature parameters based on normal vector of instantaneous contact line and its application to Hindley worm pair”. Adv. Mech. Eng. 9, 168781401772188 (2017).
  • [13] Y. Zhao, “Meshing analysis for TA worm”, Mech. Mach. Sci. 43, 13–20, (2016).
  • [14] Ch. Huai and Y. Zhao, “Variable height modification of TA worm drive”, in Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 233, 095440621875726 (2018).
  • [15] Y. Zhao, “Edge Tooth Addendum Thickness of Hindley Worm”, Mech. Mach. Sci. 46, 117–124 (2016).
  • [16] Y. Zhao, Ch. Huai, and Y. Zhang, “Compound Modification of Globoidal Worm Drive with Variable Parameters”, Appl. Math. Model. 50, 17–38 (2017).
  • [17] P. Polowniak and M. Sobolak, “Mathematical description of tooth flank surface of globoidal worm gear with straight axial tooth profile”, Open Eng. 7, 407–415 (2017).
  • [18] Q. Wen, H. Xu, and W. Tang, “The Research and Analysis of the New Modification Theory of Toroidal Worm-Gearing”, Int. Conf. Syst. Sci., Eng. Des. Manuf. Informatiz. (ICSEM) 11, 59– 62 (2010).
  • [19] Y. Chen, W. Luo, Y. Chen, and G. Zhang, “Study on the spur involute gear meshing with planar enveloping hourglass worm based on local conjugate”, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 232, 095440621770821 (2017).
  • [20] F. He, Z. Shi, and B. Yu, “Effects of tooth surface modification on planar double-enveloping hourglass worm gear drives”, J. Adv. Mech. Des. Syst. Manuf. 12, JAMDSM0040-JAMDSM0040, (2018).
  • [21] W. Xu, D. Qin, and W. Shi, “Direct digital design and simulation of meshing in worm-gear drive”, Chin. J. Mech. Eng. 19, 428–433 (2006).
  • [22] L.V. Mohan and M.S. Shunmugam, “Geometrical aspects of double enveloping worm gear drive”, Mech. Mach. Theory. 44, 2053–2065 (2009).
  • [23] K.Y. Chen and Ch.B. Tsay, “Mathematical model and worm wheel tooth working surfaces of the ZN-type hourglass worm gear set”, Mech. Mach. Theory. 44, 1701–1712 (2009).
  • [24] Ch. Rui, H. Li, J. Yang, W. Wei, “Research on a method for designing land surfaces of a dual-cone double enveloping hourglass worm wheel hob”, J. Adv. Mech. Des. Syst. Manuf. 12, JAMDSM0090-JAMDSM0090 (2018).
  • [25] J. Yang, H. Li, Ch. Rui, W. Wei, and X. Dong, “A Method to Generate the Spiral Flutes of an Hourglass Worm Gear Hob”, J. Mech. Des. 140, 063301 (2018).
  • [26] Ch. Rui, H. Li, J. Yang, W. Wei, and X. Dong, “A design and generating method for grinding relief surfaces of a dual-cone double enveloping hourglass worm gear hob”, J. Mech. Des. 140, 123301‒1 (2018).
  • [27] Z. Lei, Q. Bi, Y. Wang, and H. Ding, “Five-Axis Flank Milling Method of Plane Double Enveloping Hourglass Worm”, Adv. Mat. Res. 314–316, 1523–1532 (2011).
  • [28] S. Lagutin, E. Gudov, and B. Fedotov, “Manufacturing and load rating of modified globoid gears”, Balkan J. Mech. Transm. (BJMT). 1, 45–53 (2011).
  • [29] Sutyagin, L. Mal’ko, and I. Trifanov, “More efficient machining of globoid worm gears”, Rus. Eng. Res. 35, 623–627 (2015).
  • [30] L. Dong, J. Wang, P. Liu, W. Wei, and H. Li, “An NC rough turning method of an enveloping toroidal worm”, Prod. Eng. 6, 129–135 (2012).
  • [31] Y. Sun, H. Zheng, Q. Bi, and S. Wang, “Method of accurate grinding for single enveloping TI worm”, Sci. China-technol. Sci. 48, 430–440 (2005).
  • [32] Z. Liu, H. Lu, G. Yu, and S. Wang, “A novel CNC machining method for enveloping surface”, Int. J. Adv. Manuf. Technol. 85, 779–790 (2015).
  • [33] Z. Liu, H. Lu, S. Wang, and G. Yu, “Digitization modelling and CNC machining for cone-generated double-enveloping worm drive”, Int. J. Adv. Manuf. Technol. 95, 3393–3412 (2018).
  • [34] H. Lu, Z. Liu, and S. Wang, “Digitization modelling and CNC machining for enveloping surface parts”, Int. J. Adv. Manuf. Technol. 73, 209–227 (2014).
  • [35] A.L. Kheyfets, “Geometrically Accurate Computer 3D Models of Gear Drives and Hob Cutters”, Procedia Eng. 150, 1098–1106 (2016).
  • [36] A.L. Kheyfets, “Programming While Construction of Engineering 3D Models of Complex Geometry”, Mat. Sci. Eng. 262, 012111 (2017).
  • [37] M. Sobolak, Analysis and synthesis of mating gear tooth surface by discrete methods, Rzeszow University of Technol. Publ., Rzeszow, 2006, [in Polish].
  • [38] A.J. Muminovic, M. Colic, E. Mesic, and I. Saric, “Innovative design of spur gear tooth with infill structure”, Bull. Pol. Acad. Sci. Tech. Sci. 68(3), 477–483 (2020).
  • [39] W. Ostapski and I. Mukha, “Stress state analysis of harmonic drive elements by FEM”, Bull. Pol. Acad. Sci. Tech. Sci. 55(1), 115–123 (2007).
  • [40] M. Batsch, “Mathematical model and tooth contact analysis of convexo-concave helical bevel Novikov gear mesh”, Mech. Mach. Theory 149, 103842 (2020).
  • [41] M. Batsch, T. Markowski, S. Legutko, and G.M. Krolczyk, “Measurement and mathematical model of convexo-concave Novikov gear mesh”, Measurement 125, 516–525 (2018).
  • [42] M. Sobolak, P. Połowniak, M. Cieplak, M. Oleksy, and K. Bulanda, „Application of polymeric materials for obtaining gears with involute and sinusoidal profile”, Polimery 7‒8, 563‒567 (2020).
  • [43] AGMA 6135–A02, Design, Rating and Application of Industrial Globoidal Wormgearing (Metric Edition), Am. Natl. Stand., 2002.
  • [44] GOST 16502‒83, Basic requirements for interchange ability. Globoid gears. Tolerances, 1983.
  • [45] GOST 17696‒89, Globoid gears. Calculation of geometry, 1989.
  • [46] GOST 24438‒80, Globoid gears. Basic worm and basic generating worm, 1980.
  • [47] GOST 9369‒77, Globoid gear pairs. Basic parameters, 1977.
  • [48] M. Sobolak, P. Polowniak, P.E. Jagielowicz, “Generating of globoid helix in CATIA environment using laws”, Mechanik 7, 632–633 (2016), [in Polish].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61e8a452-5170-4c50-8fdd-c6f0bc5e7c8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.