Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, the assessment of the possibility of imparting anisotropic tribological properties to medical silicone surfaces using laser surface texturing was performed. The transversal-shaped microgrooves were laser-textured on the surface of the silicone samples applying different angles of incidence of the laser beam (α) ranging from 0° to 40°. The surface characteristics of the laser-textured silicone surface were performed by optical microscopy, surface 3D topography measurements, and contact angle measurements; the tribological tests were carried out under technically dry friction conditions and friction with lubrication conditions. The results showed: a significant increase in surface texture parameters values with Sq values ranging from 7.57 µm for α = 0° to 36.9 µm for α = 10°, compared to the non-textured sample 1.52 µm, increased hydrophilicity of the textured surfaces for most samples demonstrated by contact angle measured values for α = 0° sample showing the largest contact angle 126° as compared to the non-textured samples 103°. The produced anisotropic microstructure of the textured silicone surface, i.e. its directionality, is evidenced by obtained values of the texture aspect ratio (Str) tending to 0.00 for all textured samples. Changes in the friction coefficient’s directionality in the forward and backward directions were noted for α values above 20° for both dry conditions and friction with lubrication conditions. We can conclude that laser surface texturing allows for the effective functionalization of a medical silicone surface in terms of the anisotropy of its tribological properties.
Czasopismo
Rocznik
Tom
Strony
23--29
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr., zdj.
Twórcy
autor
- Institute of Mechanical Technology, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
autor
- Department of Constructional Materials and Biomaterials, Faculty of Materials Engineering, Kazimierz Wielki University, Jan Karol Chodkiewicz Street 30, 85-064 Bydgoszcz, Poland
autor
- Institute of Mechanical Technology, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
autor
- Department of Constructional Materials and Biomaterials, Faculty of Materials Engineering, Kazimierz Wielki University, Jan Karol Chodkiewicz Street 30, 85-064 Bydgoszcz, Poland
Bibliografia
- [1] Allen L.V. Jr.: Compounding with Silicones. International Journal of Pharmaceutical Compounding 19(3) (2015) 223-230.
- [2] Colas A.R., Curtis J.: Silicone Biomaterials: History and Chemistry & Medical Applications of Silicones. In: Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E., Eds): Biomaterials Science: An Introduction to Materials in Medicine. Academic Press; 3rd edition, 2013. 82-91.
- [3] Bračič M., Strnad S., Fras Zemljič L.: Silicone in Medical Applications. In: Bioactive Functionalisation of Silicones with Polysaccharides. SpringerBriefs in Molecular Science. Springer, Cham. 2018.
- [4] Owen M.J.: Silicone Surface Fundamentals. Macromolecular Rapid Communications 42(5) (2021) e2000360.
- [5] Marmo A.C., Grunlan M.A.: Biomedical Silicones: Leveraging Additive Strategies to Propel Modern Utility. ACS Macro Letters 12(2) (2023) 172-182.
- [6] Zare M., Ghomi E.R., Venkatraman P.D., Ramakrishna S.: Silicone-based biomaterials for biomedical applications: antimicrobial strategies and 3D printing technologies. Journal of Applied Polymer Science 138(38) (2021) e50969.
- [7] Ishihara K., Shi X., Fukazawa K., Yamaoka T., Yao G., Wu J.Y.: Biomimetic-Engineered Silicone Hydrogel Contact Lens Materials. ACS Applied Bio Materials 6(9) (2023) 3600-3616.
- [8] Chao A.H., Garza R. 3rd, Povoski S.P.: A review of the use of silicone implants in breast surgery. Expert Review of Medical Devices 13(2) (2016) 143-156.
- [9] Bakoš M., Kuťka M.: Drainage in Abdominal Surgery. Biomedical Journal of Scientific & Technical Research 2022 43(3) BJSTR. MS.ID.006912.
- [10] Makama J.G., Ameh E.A.: Surgical drains: what the resident needs to know. Nigerian Journal of Medicine 17(3) (2008) 244-250.
- [11] Srinivas D., Tyagi G., Singh G.J.: Shunt Implants - Past, Present and Future. Neurology India 69(Supplement) (2021) S463-S470.
- [12] Lawrence E.L., Turner I.G.: Materials for urinary catheters: a review of their history and development in the UK. Medical Engineering & Physics 27(6) (2005) 443-453.
- [13] Spiera R.F., Gibofsky A., Spiera H.: Silicone gel filled breast implants and connective tissue disease: an overview. Journal of Rheumatology 21(2) (1994) 239-245.
- [14] Tian F., Jiang Q., Chen J., Liu Z.: Silicone gel sheeting for treating keloid scars. Cochrane Database of Systematic Reviews 1(1) (2023) CD013878.
- [15] Ariani N., Visser A., van Oort R.P., Kusdhany L., Rahardjo T.B., Krom B.P., van der Mei H.C., Vissink A.: Current state of craniofacial prosthetic rehabilitation. International Journal of Prosthodontics 6(1) (2013) 57-67.
- [16] Kumar A., Seenivasan M.K., Inbarajan A.: A Literature Review on Biofilm Formation on Silicone and Poymethyl Methacrylate Used for Maxillofacial Prostheses. Cureus 13(11) (2021) e20029.
- [17] Yi S., Xu L., Gu X.: Scaffolds for peripheral nerve repair and reconstruction. Experimental Neurology 319 (2019) 112761.
- [18] Moran S.L., Rizzo M.: Managing Difficult Problems in Small Joint Arthroplasty: Challenges, Complications, and Revisions. Hand Clinics 39(3) (2023) 307-320.
- [19] Pereira R.S., Moura C.G., Henriques B., Chevalier J., Silva F.S., Fredel M.C.: Influence of laser texturing on surface features, mechanical properties and low-temperature degradation behavior of 3Y-TZP. Ceramics International 46 (2020) 3502-3512.
- [20] Yu Z., Yang G., Zhang W., Hu J.: Investigating the effect of picosecond laser texturing on microstructure and biofunctionalization of titanium alloy. Journal of Materials Processing Technology 255 (2018) 129-136.
- [21] Mao B., Arpith Siddaiah Y.L., Pradeep L.M.: Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: A review. Journal of Manufacturing Processes 53 (2020) 153-173.
- [22] Wang C., Li Z., Zhao H., Zhang G., Ren T., Zhang Y.: Enhanced anticorrosion and antiwear properties of Ti-6Al-4V alloys with laser texture and graphene oxide coatings. Tribology International 152 (2020) 106475.
- [23] Wu Z., Bao H., Xing Y., Liu L.: Tribological characteristics and advanced processing methods of textured surfaces: A review. International Journal of Advanced Manufacturing Technology 114 (2021) 1241-1277.
- [24] Bonse J., Kirner S.V., Griepentrog M., Spaltmann D., Krüger J.: Femtosecond Laser Texturing of Surfaces for Tribological Applications. Materials 11(5) (2018) 801.
- [25] Tiainen L., Abreu P., Buciumeanu M., Silva F., Gasik M., Guerrero R.S., Carvalho O.: Novel laser surface texturing for improved primary stability of titanium implants. Journal of the Mechanical Behavior of Biomedical Materials 98 (2019) 26-39.
- [26] Shukla P., Waugh D.G., Lawrence J., Vilar R.: Laser surface structuring of ceramics, metals and polymers for biomedical applications: A review. In Laser Surface Modification of Biomaterials; Woodhead Publishing: Cambridge, UK, 2016; pp. 281-299.
- [27] Cunha W., Carvalho O., Henriques B., Silva F.S., Özcan M.,- Souza J.C.M.: Surface modification of zirconia dental implants by laser texturing. Lasers in Medical Science 37(1) (2022) 77-93.
- [28] Han J., Zhang F., Van Meerbeek B., Vleugels J., Braem A., Castagne S.: Laser surface texturing of zirconia-based ceramics for dental applications: A review. Materials Science & Engineering C: Materials for Biological Applications 123 (2021) 112034.
- [29] Jithin S., Joshi S.S.: Surface topography generation and simulation in electrical discharge texturing: A review. Journal of Materials Processing Technology 298 (2021) 117297.
- [30] Kawasegi N., Ozaki K., Morita N., Nishimura K., Yamaguchi M.: Development and machining performance of a textured diamond cutting tool fabricated with a focused ion beam and heat treatment. Precision Engineering 47 (2017) 311-320.
- [31] Patel D.S., Jain V.K., Shrivastava A., Ramkumar J.: Electrochemical micro texturing on flat and curved surfaces: simulation and experiments. International Journal of Advanced Manufacturing Technology 100 (2019) 1269-1286.
- [32] Pettersson U., Jacobson S.: Tribological texturing of steel surfaces with a novel diamond embossing tool technique. Tribology International 39(7) (2006) 695-700.
- [33] Costa H., Hutchings I.: Some innovative surface texturing techniques for tribological purposes. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 229(4) (2015) 429-448.
- [34] Shivakoti I., Kibria G., Cep R., Pradhan B.B., Sharma A.: Laser Surface Texturing for Biomedical Applications: A Review. Coatings 11 (2021) 124.
- [35] Moskal D., Martan J., Honner M.: Scanning Strategies in Laser Surface Texturing: A Review. Micromachines 14 (2023) 1241.
- [36] Stout K.J., Sullivan P.J., Dong W.P., Mainsah E., Lou N., Mathia T., Zahouani H.: The Development of Methods for The Characterisation of Roughness in Three Dimensions, Report EUR 15178 EN, European Commission, Brussels, 1993, ISBN 0-7044-1313-2
- [37] ISO 25178-2:2021. Geometrical product specifications (GPS) — Surface texture: Areal — Part 2: Terms, definitions and surface texture parameters.
- [38] Agathopoulos S., Nikolopoulos P.: Wettability and interfacial interactions in bioceramic-body-liquid systems. J Biomed Mater Res. Apr;29(4):421-9 (1995). doi: 10.1002/jbm.820290402.
- [39] ASTM G133-22. Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61e4820f-fde8-4a0a-8acf-0bab50d955e3