PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure Evolution of Ti/ZrO2 and Ti/Al2O3 Composites Prepared by Powder Metallurgy Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current study were performed in order to assess the fabrication possibility of the metal-ceramic composites based on nanocrystalline substrates. The influence of the variable time of the high energy ball-milling (10, 30 and 50 h) on the structure, pores morphology and microhardness of Ti/ZrO2 and Ti/Al2O3 compositions was studied. The X-ray diffraction analysis confirmed the composite formation for all milling times and sintering in the case of Ti/ZrO2 system. Decomposition of substrates during milling process of Ti/Al2O3 system was also observed. Additionally, the changes of lattice parameter as a function of milling time were studied. The morphology of powders and the microstructure of the sintered samples were observed by scanning electron microscopy (SEM). Also, analysis of microhardness and pores structure were performed.
Twórcy
autor
  • University of Silesia in Katowice, Institute of Materials Science, 1A 75 Pułku Piechoty Str, 41-500 Chorzów
autor
  • University of Silesia in Katowice, Institute of Materials Science, 1A 75 Pułku Piechoty Str, 41-500 Chorzów
autor
  • University of Silesia in Katowice, Institute of Materials Science, 1A 75 Pułku Piechoty Str, 41-500 Chorzów
autor
  • University of Silesia in Katowice, Institute of Materials Science, 1A 75 Pułku Piechoty Str, 41-500 Chorzów
Bibliografia
  • [1] K. Lee, S. B. Goodman, Current state and future of joint replacements in the hip and knee, Expert Rev. Med. Devices. 5, 383-393 (2008).
  • [2] M. Long, H. J. Rack, Titanium alloys in total joint replacement - a materials science perspective, Biomaterials. 19 (18), 1621-1639 (1998).
  • [3] A. K. Gain, L. Zhang, M. Z. Quadir, Composites matching the properties of human cortical bones: The design of porous titanium-zirconia (Ti-ZrO2) nanocomposites using polymethyl methacrylate powders, Mater. Sci. Eng. A. 662, 258-267 (2016).
  • [4] P. Henrique, C. Camargo, K. G. Satyanarayana, F. Wypych, Nanocomposites: Synthesis, Structure, Properties and New Application Opportunities, Mater. Res. 12 (1), 1-39 (2009).
  • [5] G. Ryan, A. Pandit, D. Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials. 27 (13), 2651-2670 (2006).
  • [6] G. He, M. Hagiwara, Bimodal structured Ti-base alloy with large elasticity and low Young’s modulus, Mater. Sci. Eng. C. 25 (3), 290-295 (2005).
  • [7] X. Wang, Y. Chen, L. Xu, S. Xiao, F. Kong, K. Do Woo, Ti-Nb-Sn-hydroxyapatite composites synthesized by mechanical alloying and high frequency induction heated sintering, J. Mech. Behav. Biomed. Mater. 4 (8), 2074-2080 (2011).
  • [8] L. L. Hench, Bioceramics - from concept to clinic, J. Am. Ceram. Soc. 74 (7), 1487-1510 (1991).
  • [9] L. Teng, W. Li, F. Wang, Effect of Ti content on the martensitic transformation in zirconia for Ti-ZrO2 composites, J. Alloys Compd. 319 (1-2), 228-232 (2001).
  • [10] P. F. Manicone, P. Rossi Iommetti, L. Raffaelli, An overview of zirconia ceramics: Basic properties and clinical applications, J. Dent. 35 (11), 819-826 (2007).
  • [11] M. Inokoshi, F. Zhang, J. De Munck, S. Minakuchi, I. Naert, J. Vleugels, B. Van Meerbeek, K. Vanmeensel, Influence of sintering conditions on low-temperature degradation of dental zirconia, Dent. Mater. 30 (6), 669-678 (2014).
  • [12] A. Shafiei-Zarghani, S. F. Kashani-Bozorg, A. P. Gerlich, Strengthening analyses and mechanical assessment of Ti/Al2O3 nanocomposites produced by friction stir processing, Mater. Sci. Eng. A. 631, 75-85 (2015).
  • [13] Z. Yin, C. Huang, B. Zou, H. Liu, H. Zhu, J. Wang, Preparation and characterization of Al2O3/TiC micro-nano-composite ceramic tool materials, Ceram. Int. 39 (4), 4253-4262 (2013).
  • [14] H.-C. Hsu, S.-C. Wu, S.-K. Hsu, M.-S. Tsai, T.-Y. Chang, W.-F. Ho, Processing and mechanical properties of porous Ti-7.5Mo alloy, Mater. Des. 47, 21-26 (2013).
  • [15] C. Caparros, M. Ortiz-Hernandez, M. Molmeneu, M. Punset, J. A. Calero, C. Aparicio, M. Fernandez-Fairen, R. Perez, F. J. Gil, Bioactive macroporous titanium implants highly interconnected, J. Mater. Sci. Mater. Med. 27 (10), 151 (2016).
  • [16] S. Kujala, J. Ryhänen, A. Danilov, J. Tuukkanen, Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute, Biomaterials. 24 (25), 4691-7 (2003).
  • [17] M. Karolus, J. Panek, Nanostructured Ni-Ti alloys obtained by mechanical synthesis and heat treatment, J. Alloys Compd. 658, 709-715 (2016).
  • [18] G. Dercz, I. Matuła, M. Zubko, N. Kuczera, Dispersion and Structure Analysis of Nanocrystalline Ti-m ZrO 2 Composite Powder for Biomedical Applications, J. Nanosci. Nanotechnol. 19 (5), 2799-2806 (2019).
  • [19] D. B. Wiles, R. A. Young, A new computer program for Rietveld analysis of X-ray powder diffraction patterns, J. Appl. Cryst. 14 (2), 149-151 (1981).
  • [20] C. Suryanarayana, N. Al-Aqeeli, Mechanically alloyed nanocomposites, Prog. Mater. Sci. 58 (4), 383-502 (2013).
  • [21] C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci. 46 (1-2), 1-184 (2001).
  • [22] M. J. Mas-Guindal, E. Benko, M. A. Rodríguez, Nanostructured metastable cermets of Ti-Al2O3 through activated SHS reaction, J. Alloys Compd. 454 (1-2), 352-358 (2008).
  • [23] J. Huaxia, Characterization of the interaction between molten titanium alloy and AI203, J. Mater. Sci. 30, 5617-5620 (1995).
  • [24] T. B. Massalski, H. Okamoto, P. R. Subramanian, B. Massalski, L. Thaddeus, Binary Alloy Phase Diagrams, 2nd Ed. ASM International (1990).
  • [25] H.U.A. Lu, C. L. Bao, D. H. Shen, Y. D. Cui, Z. D. Lin, Study of the Ti/AI203 interface, J. Mater. Sci. 30, 339-346 (1995).
  • [26] G. Dercz, I. Matuła, Effect of ball milling on the properties of the porous Ti-26Nb alloy for biomedical applications, Mater. Tehnol. 51 (5), 795-803 (2017).
  • [27] I. H. Oh, N. Nomura, N. Masahashi, S. Hanada, Mechanical properties of porous titanium compacts prepared by powder sintering, Scr. Mater. 49 (12), 1197-1202 (2003).
  • [28] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials. 26 (27), 5474-5491 (2005).
  • [29] L.M.R. Vasconcellos, M. V. Oliveira, M.L.A. Graca, L.G.O. Vasconcellos, C.A.A. Cairo, Y. R. Carvalho, Design of dental implants, influence on the osteogenesis and fixation, J. Mater. Sci. Mater. Med. 19 (8), 2851-2857 (2008).
  • [30] G. Dercz, I. Matuła, M. Zubko, A. Kazek-Kęsik, J. Maszybrocka, W. Simka, J. Dercz, P. Świec, I. Jendrzejewska, Synthesis of porous Ti-50Ta alloy by powder metallurgy, Mater. Charact. 142, 124-136 (2018).
  • [31] A. M. Kliauga, M. Ferrante, Interface compounds formed during the diffusion bonding of Al2O3 to Ti, J. Mater. Sci. 35(17), 4243-4249 (2000).
  • [32] J. S. Moya, S. Lopez-Esteban, C. Pecharromán, The challenge of ceramic/metal microcomposites and nanocomposites, Prog. Mater. Sci. 52 (7), 1017-1090 (2007).
  • [33] J. S. Moya, S. López-Esteban, C. Pecharromán, J. F. Bartolomé, R. Torrecillas, Mechanically stable monoclinic zirconia-nickel composite, J. Am. Ceram. Soc. 85 (8), 2119-2121 (2002).
  • [34] M. U. Jurczyk, K. Jurczyk, K. Niespodziana, A. Miklaszewski, M. Jurczyk, Titanium-SiO2 nanocomposites and their scaffolds for dental applications, Mater. Charact. 77, 99-108 (2013).
Uwagi
EN
1. This work was supported by the Polish National Science Centre (Polish: Narodowe Centrum Nauki, abbr. NCN) under research project nos. 2011/03/D/ST8/04884 and 2016/23/N/ST8/03809.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61e3bb49-894d-4050-9d0c-7a5f9b20e195
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.