PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A decentralized control strategy to bring back frequency and share reactive power in isolated microgrids with virtual power plant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a novel Power-Frequency Droop Control (PFDC) is introduced to perfectly bring back the system frequency and share the reactive power in isolated microgrid with virtual power plant (VPP). The frequency-based power delivery must be essentially implemented in VPP which can operate as a conventional synchronous generator. It has been attained by enhancing the power processing unit of each VPP to operate as an active generator. The inverter coupling impedance which has been assigned by the virtual impedance technique has reduced the affected power coupling resulting from line resistance. The reference has been subsequently adjusted to compensate the frequency deviation caused by load variation and retrieve the VPP frequency to its nominal value. In addition, the line voltage drop has compensated the voltage drop and load sharing error to obliterate the reactive power sharing imprecision resulting from the voltage deviation. The voltage feedback confirms the correct voltage after compensating the voltage drop. As an illustration, conventional PFDC after a load change cannot restore the system frequency which is deviated from 50 Hz and rested in 49.9 Hz while, proposed PFDC strategy fades away the frequency deviation via compensating the variation of the frequency reference. Likewise, the frequency restoration factor ( γ) has an effective role in retrieving the system frequency, i.e., the restoration rate of the system frequency is in proportion with γ. As a whole, the simulation results have pointed to the high performance of proposed strategy in an isolated microgrid.
Rocznik
Strony
art. no. e136190
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
  • Electrical and Computer Engineering Department, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Electrical and Computer Engineering Department, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Electrical and Computer Engineering Department, Science and Research Branch, Islamic Azad University, Tehran, Iran
Bibliografia
  • [1] G.U. Atmo, C.F. Duffield, and D. Wilson, “Structuring procurement to improve sustainability outcomes of power plant projects”, Energy Technol. Policy 2(1), 47‒57 (2015).
  • [2] P. Kumar, P.S. Sikder, and N. Pal, “Biomass fuel cell based distributed generation system for Sagar Island”, Bull. Pol. Ac.: Tech. 66(5), 665‒674 (2018).
  • [3] M. Wieczorek, M. Lewandowski, and W. Jefimowski, “Cost comparison of different configurations of a hybrid energy storage system with battery-only and supercapacitor-only storage in an electric city bus”, Bull. Pol. Ac.: Tech. 44(6), 1095‒1106 (2019).
  • [4] W. Marańda and M. Piotrowicz, “Efficiency of maximum power point tracking in photovoltaic system under variable solar irradiance”, Bull. Pol. Ac.: Tech. 62(4), 713‒721 (2014).
  • [5] U. Akram, M. Khalid, and S. Shafiq, “An innovative hybrid wind-solar and battery-supercapacitor microgrid system-development and optimization”, IEEE Access 5(10), 25897‒25912 (2017).
  • [6] M.A. Hannan, M.G.M. Abdolrasol, M. Faisal, P.J. Ker, R.A. Begum, and A. Hussain, “Binary particle swarm optimization for scheduling MG integrated virtual power plant toward energy saving”, IEEE Access 7(6), 107937‒07951 (2019).
  • [7] T. Wu, Z. Liu, and J. Liu, “A unified virtual power decoupling method for droop-controlled parallel inverters in microgrids”, IEEE Trans. Power Electron. 31(8), 5587‒5603 (2016).
  • [8] F. Shahnia and A. Ghosh, “Coupling of neighbouring low voltage residential distribution feeders for voltage profile improvement using power electronics converters”, IET Renew. Power Gener. 10(2), 535‒547 (2016).
  • [9] X. Tang, X. Hu, and N. Li, “A novel frequency and voltage control method for islanded based on multienergy storages”, IEEE Trans. Smart Grid 7(1), 410‒419 (2016).
  • [10] H. Zhang, S. Kim, Q. Sun, and J. Zhou, “Distributed adaptive virtual impedance control for accurate reactive power sharing based on consensus control in microgrids”, IEEE Trans. Smart Grid 8(4), 1749‒1761 (2017).
  • [11] M. Eskandari and L. Li, “Microgrid Operation Improvement by Adaptive Virtual Impedance”,  IET Renew. Power Gener. 13(2), 296‒307 (2018).
  • [12] Z.A. Obaid, L.M. Cipcigan, L. Abrahim, and M.T. Muhsin, “Frequency control of future power systems: reviewing and evaluating challenges and new control methods”, J. Mod. Power Syst. Clean Energy 7(1), 9‒25 (2019).
  • [13] R.M. Imran, S. Wang, and F.M.F. Flaih, “DQ-Voltage droop control and robust secondary restoration with eligibility to operate during communication failure in autonomous microgrid”, IEEE Access 7(12), 6353‒6361 (2019).
  • [14] N.N. AbuBakar, M.Y. Hassan, M.F. Sulaima, M. Na’im, M. Nasir and A. Khamisd, “Microgrid and load shedding scheme during islanded mode: A review”, Renewable Sustainable Energy Rev., 71(6), 161‒169 (2017).
  • [15] T.A. Jumani, M.W. Mustafa, M.M. Rasid, N.H. Mirjat, Z.H. Leghari, and M.S. Saeed, “Optimal Voltage and Frequency Control of an Islanded Microgrid Using Grasshopper Optimization Algorithm”, Energies 11(11), 1‒20 (2018).
  • [16] Y. Han, P. Shen, and X. Zhao, “An enhanced power sharing scheme for voltage unbalance and harmonics compensation in an islanded AC microgrid”, IEEE Trans. Energy Convers. 31(3), 1037‒1050 (2016).
  • [17] M. Kosari and S.H. Hosseinian, “Decentralized reactive power sharing and frequency restoration in islanded microgrid”, IEEE Trans. Power Syst. 32(4), 2901‒2912 (2017).
  • [18] Y.A. Mohamed and E.F. El-Saadany, “Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids”, IEEE Trans. Power Electron. 23(6), 2806‒2816 (2008).
  • [19] X. Hou, Y. Sun, H. Han, Z. Liu, W. Yuan, and M. Su, “A fully decentralized control of grid-connected cascaded inverters”, IEEE Trans. Power Deliv. 10(1), 315‒317 (2019).
  • [20] L. Li, Y. Sun, Z. Liu, X. Hou, G. Shi, and M. Su, “A decentralized control with unique equilibrium point for cascaded-type microgrid”, IEEE Trans. Sustain. Energy 10(1), 324‒326 (2019).
  • [21] F. Guo, C. Wen, and J. Mao, “Distributed secondary voltage and frequency restoration control of droop-con-trolled inverter-based microgrids”, IEEE Trans. Ind. Electron. 62(7), 4355‒4364 (2015).
  • [22] S. Zuo, A. Davoudi, and Y. Song, “Distributed finite-time voltage and frequency restoration in islanded AC microgrids”, IEEE Trans. Ind. Electron. 63(10), 5988‒5997 (2016).
  • [23] C. Dou, Z. Zhang, and D. Yu, “MAS-based hierarchical distributed coordinate control strategy of virtual power source voltage in low-voltage microgrid”, IEEE Access 5(1), 11381‒11390 (2017).
  • [24] N.M. Dehkordi, N. Sadati, and M. Hamzeh, “Distributed robust finite-time secondary voltage and frequency control of islanded microgrids”, IEEE Trans. Power Syst., 32(5), 3648‒3659 (2017).
  • [25] N.M. Dehkordi, N. Sadati, and M. Hamzeh, “Fully distributed cooperative secondary frequency and voltage control of islanded microgrids”, IEEE Trans. Energy Convers. 32(2), 675‒685 (2017).
  • [26] D.O. Amoateng, M.A. Hosani, and M.S. Elmoursi, “Adaptive voltage and frequency control of islanded multi-microgrids”, IEEE Trans. Power Syst. 33(4), 4454‒4465 (2018).
  • [27] Q. Shafiee, J.M. Guerrero, and J.C. Vasquez, “Distributed secondary control for islanded microgrids-a novel approach”, IEEE Trans. Power Electron. 29(2), 1018‒1031 (2014).
  • [28] U. Sowmmiya and U. Govindarajan, “Control and power transfer operation of WRIG-based WECS in a hybrid AC/DC microgrid”, IET Renewable Power Gener. 12(3), 359‒373 (2018).
  • [29] Z. Zhang, C. Dou, and D. Yu, “An event-triggered secondary control strategy with network delay in islanded microgrids”, IEEE Syst. J. 13(2), 1851‒1860 (2019).
  • [30] J. He and Y. Li, “An enhanced microgrid load demand sharing strategy”, IEEE Trans. Power Electron. 27(9), 3984‒3995 (2012).
  • [31] Y. Fan, G. Hu, and M. Egerstedt, “Distributed reactive power sharing control for microgrids with event-triggered communication”, IEEE Trans. Control Syst. Technol. 25(1), 118‒128 (2017).
  • [32] X. Lu. J. Lai, and X. Yu, “Distributed coordination of islanded microgrid clusters using a two-layer intermittent communication network”, IEEE Trans. Ind. Inf. 14(9), 3956‒3969 (2018).
  • [33] X. Wu, C. Shen, and R. Iravani, “A distributed, cooperative frequency and voltage control for microgrids”, IEEE Trans. Smart Grid, 9(4), 2764‒2776 (2018).
  • [34] G. Lou, W. Gu, and L. Wang, “Decentralized secondary voltage and frequency control scheme for islanded microgrid based on adaptive state estimator”, IET Gener. Transm. Distrib., 11(15), 3683‒3693 (2017).
  • [35] B. Wang, S. Liu, and Y. Zhang, “Reactive power sharing control based on voltage compensation strategy in microgrid”, 36th Chinese Control Conference (2017).
  • [36] H.E.Z. Farag, S. Saxena, and A. Asif, “A robust dynamic state estimation for droop controlled islanded microgrids”, Electr. Power Syst. Res. 140(11), 445‒455 (2016).
  • [37] K. Sabzevari, S. Karimi, F. Khosravi, and H. Abdi, “Modified droop control for improving adaptive virtual impedance strategy for parallel distributed generation units in islanded microgrids”, Int. Trans. Electr. Energy Syst., 29(1), e2689 (2019).
  • [38] C. Dou, Z. Zhang, D. Yue, and M. Song, “Improved droop control based on virtual impedance and virtual power source in low-voltage microgrid”, IET Gener. Transm. Distrib. 11(4), 1046‒1054 (2017).
  • [39] P.K. Ray, N. Kishor, and S.R. Mohanty, “Islanding and power quality disturbance detection in grid-connected hybrid power system using wavelet and S-transform”, IEEE Trans. Smart Grid, 3(3), 1082‒1094 (2012).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61e2b211-d910-4a77-9844-682b6b30d6be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.