PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Augmented and Virtual Reality Tools in Training Mining Engineers

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Narzędzia rozszerzonej i wirtualnej rzeczywistości w szkoleniu inżynierów górnictwa
Języki publikacji
EN
Abstrakty
EN
The transition to smart mining has significantly increased the requirements for training modern mining engineers, this necessitating digitalization of this process. Based on scientific research, virtual and augmented reality technology are the most effective and safe. The article presents methods for using virtual and augmented reality technology in training mining engineers. The methods are successfully implemented in laboratories of Kryvyi Rih National University (Ukraine) and have been proven effective during distance learning in the context of the COVID-19 pandemic and the russian military aggression against Ukraine. Nevertheless, further scientific research is needed to introduce modern digital technologies into mining engineers’ training at universities in order to form a competitive and competent specialist.
PL
Przejście na inteligentne wydobycie znacznie zwiększyło wymagania dotyczące szkolenia nowoczesnych inżynierów górnictwa, co wymaga cyfryzacji tego procesu. Bazując na badaniach naukowych, technologia wirtualnej i rozszerzonej rzeczywistości jest najskuteczniejsza i najbezpieczniejsza. W artykule przedstawiono metody wykorzystania technologii wirtualnej i rozszerzonej rzeczywistości w szkoleniu inżynierów górnictwa. Metody są z powodzeniem wdrażane w laboratoriach Krzyworoskiego Uniwersytetu Narodowego (Ukraina) i okazały się skuteczne podczas nauczania na odległość w kontekście pandemii COVID-19 i rosyjskiej agresji militarnej na Ukrainę. Niemniej jednak potrzebne są dalsze badania naukowe, aby wprowadzić nowoczesne technologie cyfrowe do kształcenia inżynierów górnictwa na uczelniach w celu ukształtowania konkurencyjnego i kompetentnego specjalisty.
Rocznik
Tom
Strony
137--146
Opis fizyczny
Bibliogr. 40 poz., rys., zdj.
Twórcy
  • Kryvyi Rih National University, Kryvyi Rih, Ukrane
  • Kryvyi Rih National University, Kryvyi Rih, Ukrane
  • Kryvyi Rih National University, Kryvyi Rih, Ukrane
  • Faculty of Energy and Fuels, AGH University of Science & Technology, Krakow, Poland
Bibliografia
  • 1. Abdelrazeq, A., Daling, L., Suppes, R., Feldmann, Y. & Hees, F. (2019, March 11–13). A virtual reality educational tool in the context of mining engineering : the virtual reality mine [Conferense session]. 13th International Technology, Education and Development Conference, Valencia, Spain. https://doi.org/10.21125/inted.2019.2002
  • 2. Augmented reality set to change the future of mine safety. (2020, August 4). Australasian Mine Safety Journal. https://www.amsj.com.au/augmented-reality-mine-safety/
  • 3. Bakum, Z., Tkachuk, V. (2014). Mining engineers training in context of innovative system of Ukraine. Metallurgical and Mining Industry, 6(5), 29–34. https://www.metaljournal.com.ua/assets/Journal/7-Tkachuk.pdf
  • 4. Barker, T. (2012). Images and eventfulness: expanded cinema and experimental research at the University of New South Wales. Studies in Australasian Cinema, 6(2), 111–123. http://dx.doi.org/10.1386/sac.6.2.111_1
  • 5. Bastug, E., Bennis, M., Medard, M., & Debbah, M. (2017). Toward interconnected virtual reality: opportunities, challenges, and enablers. IEEE Communications Magazine, 55(6), 110–117. https://doi.org/10.1109/ MCOM.2017.1601089
  • 6. Bharathy, C. (2021, July 26). Virtual Reality is a Game Changer for the Mining Industry. Fusion VR. https://www. fusionvr.in/blog/2021/07/26/virtual-reality-is-a-game-changer-for-the-mining-industry/
  • 7. Ciepiela, M., Sobczyk, W. (2021). A study of PM 10, PM 2.5 concentrations in the atmospheric air in Krakow, Poland. Journal of the Polish Mineral Engineering Society, 1, 129–135. http://www.potopk.com.pl/Full_text/2021_ v1_full/IM%201-2021-a17.pdf
  • 8. Cybermine Full Mission Mining Simulators. (2022). ThoroughTec Simulation. https://www.thoroughtec.com/cybermine- full-mission-mining-simulators/?gclid=Cj0KCQiA8aOeBhCWARIsANRFrQHl8DOib0VikhOtAbrAaEr4W- 1GqVwPflrlddO_HVa8P6JzGj14VpM8aArmzEALw_wcB
  • 9. Daling, L. M., Khodaei, S., Thurner S. (2021). A decision matrix for implementing AR, 360° and VR experiences into mining engineering education. In C. Stephanidis, M. Antona, S. Ntoa (Eds.), Communications in Computer and Information Science, (pp. 225–232). Springer Science and Business Media. https://doi.org/10.1007/978-3-030- 78642-7_30
  • 10. Daling, L., Kommetter, C., Abdelrazeq, A., Ebner, M. & Ebner, M. (2020). Mixed Reality Books: Applying Augmented and Virtual Reality in Mining Engineering Education. In: V .Geroimenko (Ed.), Augmented Reality in Education (pp. 185–195). Springer. https://doi.org/10.1007/978-3-030-42156-4
  • 11. De Paoli, C. (2021, May 14). Tomra Expands Its Mining Services With a New Augmented Reality Tool: Tomra Visual Assist. Heavy Quip Magazine. https://www.heavyquipmag.com/2021/05/14/tomra-expands-its-mining-services- with-a-new-augmented-reality-tool-tomra-visual-assist/
  • 12. Del Favero, D., Hardjorno, F. (2012). Building VR: Project Overview. iCinema. http://www.icinema.unsw.edu.au/ projects/building-vr/project-overview/
  • 13. Fang, J., Fan, C., Wang, F. et al. (2022). Augmented Reality Platform for the Unmanned Mining Process in Underground Mines. Mining, Metallurgy & Exploration, 39, 385–395. https://doi.org/10.1007/s42461-021-00537-1
  • 14. Grabowski, A., Jankowski, J. (2015). Virtual reality-based pilot training for underground coal miners. Safety Science, 72, 310–314. https://doi.org/10.1016/j.ssci.2014.09.017
  • 15. Ignite EDD [Video]. (2022). YouTube. https://www.youtube.com/@igniteEDD
  • 16. IoT & Industry 4.0. (2020). b.telligent. https://www.btelligent.com/en/portfolio/industry-40/
  • 17. Kanani, H. (2019, October 1). AR and VR in Mining Industry : Transforming the Future. Plutomen. https://pluto- men.com/ar-and-vr-in-mining-industry-transforming-the-future/#
  • 18. Kizil, M. S., Kerridge, A. P., Hancock, M. G. (2004, June 15–16). Use of virtual reality in mining education and training [Conferense session]. CRC Mining Research and Effective Technology Transfer Conference, Noosa Heads, Australia. https://espace.library.uq.edu.au/view/UQ:100045
  • 19. Li, M., Sun, Z. M.,. Lyu, P. Y, Chen, J., & Mao, S. (2018). Study on key technology of multiplayer virtual reality training platform for fully-mechanized coal mining face. Coal Science and Technology, 46(1), 156–161. https://doi. org/10.1155/2020/6243085
  • 20. Li, M., Sun, Zh., Jiang, Zh., Tan, Zh., Chen, J. (2020). A Virtual Reality Platform for Safety Training in Coal Mines with AI and Cloud Computing. Multi-Goal Decision Making for Applications in Nature and Society, 2020. https:// doi.org/10.1155/2020/6243085
  • 21. Malecaj, L. (2021, August 9). Augmented Reality Revolutionizing Mining Industry. VSight. https://vsight.io/blog/ augmented-reality-revolutionizing-mining-industry/
  • 22. Mitra, R., Saydam, S. (2014). Can artificial intelligence and fuzzy logic be integrated into virtual reality applications in mining? Journal of the Southern African Institute of Mining and Metallurgy, 114(12), 1009–1016. https://www. researchgate.net/publication/279325623_Can_artificial_intelligence_and_fuzzy_logic_be_integrated_into_virtual_ reality_applications_in_mining
  • 23. Orr, T. J., Mallet, L. G., Margolis, K. A. (2009). Enhanced fire escape training for mine workers using virtual reality simulation. Mining Engineering, 61(11), 41–44. https://www.cdc.gov/niosh/mining%5C/UserFiles/works/pdfs/efetfm. pdf
  • 24. Pysmennyi, S., Fedko, M., Shvaher, N., Chukharev, S. (2020). Mining of rich iron ore deposits of complex structure under the conditions of rock pressure development. E3S Web of Conferences, 201. https://doi.org/10.1051/e3sconf/ 202020101022
  • 25. Pysmennyi, S., Peremetchyk, A., Chukharev, S., Anastasov, D. & Tomiczek, K. (2022). The mining and geometrical methodology for estimating of mineral deposits. IOP Conference Series: Earth and Environmental Science, 1049(1). https://doi.org/10.1088/1755-1315/1049/1/012029
  • 26. Radwanek-Bąk, B., Sobczyk, W., Sobczyk, E. J. (2020). Support for multiple criteria decisions for mineral deposits valorization and protection. Resources Policy, 68, 1–11. https://doi.org/10.1016/j.resourpol.2020.101795
  • 27. Reality First, Digital Second. (2020). RealWear. https://www.realwear.com/hmt-1/
  • 28. Schofield, D., Denby, B., Hollands, R. (2001). Mine safety in the twenty-first century: the application of computer graphics and virtual reality. In M. Karmis (Ed.), Mine Health and Safety Management (pp. 153–174). Society of Mining, Metallurgy, and Exploration, Inc.
  • 29. SensPlus Buddy Communication. (2019). Yokogawa Electric Corporation. https://www.yokogawa.com/solutions/ products-and-services/lifecycle-services/operation-and-maintenance-improvement/sensplus-buddy-communication/# Details
  • 30. Shchokin, V., Tkachuk, V. (2014). Automatization of agglomerative production on the base of application of Neuro- Fuzzy controlling systems of the bottom level. Metallurgical and Mining Industry, 6(6), 32–39. https://www. metaljournal.com.ua/assets/MMI_2014_6/7-Shchokin.pdf
  • 31. Shepiliev, D. S., Modlo, Y. O., Yechkalo, Y. V., Osadchyi, V. V. & Semerikov, S. O. (2020). WebAR development tools: An overview. CEUR Workshop Proceedings, 2832, 84–93. https://ceur-ws.org/Vol-2832/paper12.pdf
  • 32. Sobczyk, W., Sobczyk, E. J. (2021). Varying the energy mix in the EU-28 and in Poland as a step towards sustainable development. Energies, 14(1502), 1–19. https://www.mdpi.com/1996-1073/14/5/1502
  • 33. Someswar, M., Bhattacharya, A. (2018, January 11). MineAr: using crowd knowledge for mining association rules in the health domain [Conference session]. ACM India Joint International Conference on Data Science and Management of Data, New York, NY, USA. https://doi.org/10.1145/3152494.3152504
  • 34. Sykes, J. (2019, March 21). How data visualisation is revolutionising mining. Maptek Pty Limited. https://www. maptek.com/blogs/how-data-visualisation-is-revolutionising-mining/
  • 35. Takahashi, D. (2017, October 10). Founder Brian Mullins steps down as CEO of augmented reality firm Daqri. VentureBeat. https://venturebeat.com/business/founder-brian-mullins-steps-down-as-ceo-of-augmented-realityfirm- daqri/
  • 36. Tichon, J., Burgess-Limerick, R. (2011). A review of virtual reality as a medium for safety related training in the minerals industry. Journal of Health & Safety Research & Practice, l(3), 33–40. https://eprints.qut.edu.au/123479/
  • 37. Tkachuk, V. V., Yechkalo, Y. V., Markova, O. M. (2017). Augmented reality in education of students with special educational needs. CEUR Workshop Proceedings, 2168, 66–71. https://doi.org/10.55056/cte.136
  • 38. Wheeler, A. (2019, October 9). DAQRI is Closing Up Shop: Another very promising industrial AR startup is biting the proverbial dust. engineering.com. https://www.engineering.com/story/daqri-is-closing-up-shop
  • 39. Wu, Y., Chen, M., Wang, K., & Fu, G. (2019). A dynamic information platform for underground coal mine safety based on internet of things. Safety Science, 113, 9–18. https://doi.org/10.1016/j.ssci.2018.11.003
  • 40. Yechkalo, Y., Tkachuk, V., Hruntova, T., Brovko, D. & Tron, V. (2019). Augmented reality in training engineering students: Teaching methods. CEUR Workshop Proceedings, 2393, 952–959. http://ceur-ws.org/Vol-2393/
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61e1b647-1d80-4471-a747-66b033667ba0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.