PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of metal uptake factors of native trees colonizing an abandoned copper mine e a quest for phytostabilization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Accumulation and enrichment of heavy metals in the above ground parts of Australian native Acacia pycnantha (Ap) and Eucalyptus camaldulensis (Ec) growing in an abandoned copper mine located in Kapunda, South Australia have been studied. Cu and other metals (Na, Al, K, Ca, Fe, Zn, Cd and Pb) in plants and corresponding soils were analysed to evaluate plant interaction with soils containing heavy metals. As per the total metal analysis of leaf and corresponding soil samples, Ap accumulated 93.6 mg kgˉ¹ of Cu in leaf while the corresponding soil concentration was 1632 mg kgˉ¹. The Ec accumulated 5341 mg kgˉ¹ of Cu in leaf while the concentration of this heavy metal in soil was 65 mg kgˉ¹ in soil. The ESEM spectral analysis also showed a high leaf concentration of Cu in Ec (7%) as against only 0.12% in Ap. The average bioconcentration factor for Cu, Zn,Cd and Pb in Ec wasmuch higher than that of Ap. Similarly, enrichment factor was more in Ec for Cu, Zn and Pb than in Ap. In contrast, translocation factor for only Zn and Cd was high in Ap. This study points out that Ec and Ap have different stabilising potential in remediating heavy metals like Cu in mined soils.
Rocznik
Strony
115--123
Opis fizyczny
Bibliogr. 57 poz.
Twórcy
autor
  • Future Industries Institute, Division of Information Technology, Engineering and the Environment, University of South Australia, SA 5095, Australia
  • School of Natural and Built Environments, Division of Information Technology, Engineering and the Environment, University of South Australia, SA 5095, Australia
autor
  • Global Institute for Environmental Research (GIER), University of Newcastle, ATC Building, Callaghan, Newcastle, NSW 2308, Australia
  • Global Institute for Environmental Research (GIER), University of Newcastle, ATC Building, Callaghan, Newcastle, NSW 2308, Australia
autor
  • School of Natural and Built Environments, Division of Information Technology, Engineering and the Environment, University of South Australia, SA 5095, Australia
  • Formerly Professor of Microbiology & Dean, Faculty of Life Sciences, Sri Krishnadevaraya University, Anantapur 515055, India
autor
  • Global Institute for Environmental Research (GIER), University of Newcastle, ATC Building, Callaghan, Newcastle, NSW 2308, Australia
Bibliografia
  • 1. Agazzi, A., & Pirola, C. (2000). Fundamentals, methods and future trends of environmental microwave sample preparation. Microchemical Journal, 67(1), 337-341.
  • 2. Ahmed, R., Hoque, A. R., & Hossain, M. K. (2008). Allelopathic effects of leaf litters of Eucalyptus camaldulensis on some forest and agricultural crops. Journal of Forestry Research, 19(1), 19-24.
  • 3. Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals - concepts and applications. Chemosphere, 91(7), 869-881.
  • 4. Ash, R., & Truong, P. (2003). The use of Vetiver grass wetlands for sewerage treatment in Australia. In Proceedings of 3rd International Conference on Vetiver, Guangzhou, China (pp. 132-141).
  • 5. Baker, A. J. (1981). Accumulators and excluders-strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3(1-4), 643-654.
  • 6. Baker, A. J. M., & Brooks, R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery, 1(2), 81-126.
  • 7. Boland, D. J., Brooker, M. I. H., Chippendale, G. M., Hall, N., Hyland, B. P. M., Johnston, R. D., et al. (Eds.). (2006). Forest trees of Australia (p. 687). Melbourne: CSIRO Publishing.
  • 8. Boughton, V. H. (1986). Phyllode structure, taxonomy and distribution in some Australian Acacias. Australian Journal of Botany, 34(6), 663-674.
  • 9. Boyes, L. J., Gunton, R. M., Griffiths, M. E., & Lawes, M. J. (2011). Causes of arrested succession in coastal dune forest. Plant Ecology, 212(1), 21-32.
  • 10. Brewer, G. J. (2010). Copper toxicity in the general population. Clinical Neurophysiology, 121(4), 459-460.
  • 11. Brockwell, J., Searle, S. D., Jeavons, A. C., & Waayers, M. (2005). Nitrogen fixation in acacias: An untapped resource for sustainable plantations, farm forestry and land reclamation (ACIAR).
  • 12. Brodribb, T., & Hill, R. S. (1993). A physiological comparison of leaves and phyllodes in Acacia melanoxylon. Australian Journal of Botany, 41(3), 293-305.
  • 13. Brooker, M. I. H., Slee, A. V., Connors, J. R., & Duffy, S. M. (2005). CD-ROM review EUCLID, Eucalypts of Southern Australia. South African Journal of Botany, 71(1), 130-131.
  • 14. Cerqueira, B., Arenas-Lago, D., Andrade, M. L., & Vega, F. A. (2015). Using time of flight secondary ion mass spectrometry and field emission scanning electron microscopy with energy dispersive X-ray spectroscopy to determine the role of soil components in competitive copper and cadmium migration and fixation in soils. Geoderma, 251, 65-77.
  • 15. Chaplot, P. C. (2013). Response of Acacia nilotica and Acacia senegal to soil amendments on problematic land. Annals of Agri-Bio Research, 18(3), 375-376.
  • 16. Chenery, S. R., Izquierdo, M., Marzouk, E., Klinck, B., Palumbo-Roe, B., & Tye, A. M. (2012). Soil-plant interactions and the uptake of Pb at abandoned mining sites in the Rookhope catchment of the N. Pennines, UK-A Pb isotope study. Science of the Total Environment, 433, 547-560.
  • 17. Couillard, C. M., Courtenay, S. C., & Macdonald,, R. W. (2008). Chemical-environment interactions affecting the risk of impacts on aquatic organisms: A review with a Canadian perspective-interactions affecting vulnerability. Environmental Reviews, 16(NA), 19-44.
  • 18. Costermans, L. F. (1989). Native trees and shrubs of south-eastern Australia. New-Holland Publishers. CSIRO Publications.
  • 19. Doupé, R. G., & Lymbery, A. J. (2005). Environmental risks associated with beneficial end uses of mine lakes in southwestern Australia. Mine Water Environment, 24, 134-138.
  • 20. Gawronski, S. W., Greger, M., & Gawronska, H. (2011). Plant taxonomy and metal phytoremediation. Detoxification of heavy metals (pp. 91-109). Berlin, Heidelberg: Springer.
  • 21. Gibson, M. R., Richardson, D. M., Marchante, E., Marchante, H., Rodger, J. G., Stone, G. N., et al. (2011). Reproductive biology of Australian acacias: important mediator of invasiveness? Diversity and Distributions, 17(5), 911-933.
  • 22. González, R. C., & González-Chávez, M. C. A. (2006). Metal accumulation in wild plants surrounding mining wastes. Environmental Pollution, 144(1), 84-92.
  • 23. Grant, C. D., Campbell, C. J., & Charnock, N. R. (2002). Selection of species suitable for derelict mine site rehabilitation in New South Wales, Australia. Water, Air, and Soil Pollution, 139(1-4), 215e235.
  • 24. Haling, R. E., Brown, L. K., Bengough, A. G., Young, I. M., Hallett, P. D., White, P. J., et al. (2013). Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength. Journal of Experimental Botany, 64(12), 3711-3721.
  • 25. Hazelton, P. A., & Murphy, B. W. (2007). Interpreting soil test results: What do all the numbers mean? (2nd ed.). Collingwood, Victoria Australia: CSIRO Publishing.
  • 26. ISO - International Standard Organisation. (2002). Soil quality sampling. Part 1: Guidance on the design of sampling programmes. ISO, 103 81-1.
  • 27. Khan, M. A., Hussain, I., & Khan, E. A. (2008). Allelopathic effects of Eucalyptus (Eucalyptus camaldulensis L.) on germination and seedling growth of wheat (Triticum aestivum L.). Pakistan Journal of Weed Science Research, 14(1/2), 9-18.
  • 28. Krebs, C. J. (1999). Ecological methodology (Vol. 620). Menlo Park, California: Benjamin/Cummings.
  • 29. Krumins, J. A., Goodey, N. M., & Gallagher, F. (2015). Plantesoil interactions in metal contaminated soils. Soil Biology and Biochemistry, 80, 224-231.
  • 30. Kurek, E., & Majewska, M. (2012). Microbially Mediated Transformations of Heavy Metals in Rhizosphere. In A. Zaidi, P. A. Wani, & M. S. Khan (Eds.), Toxicity of Heavy Metals to Legumes and Bioremediation (pp. 129-146). Vienna: Springer.
  • 31. Lamb, D. T., Ming, H., Megharaj, M., & Naidu, R. (2010). Phytotoxicity and accumulation of lead in Australian native vegetation. Archives of Environmental Contamination and Toxicology, 58(3), 613-621.
  • 32. Mackasey, W. O. (2004). Abandoned mines in Canada, WOM geological associates, mining watch Canada. WOM Geological Associates.
  • 33. Maksymiec, W. (1998). Effect of copper on cellular processes in higher plants. Photosynthetica, 34(3), 321-342.
  • 34. Ma, Y., Rajkumar, M., Luo, Y., & Freitas, H. (2013). Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b. Chemosphere, 93(7), 1386-1392.
  • 35. Masvodza, D. R., Dzomba, P., Mhandu, F., & Masamha, B. (2013). Heavy metal content in Acacia saligna and Acacia polyacantha on Slime Dams: implications for phytoremediation. American Journal of Experimental Agriculture, 3(4), 871-883.
  • 36. Mendez, A., Gomez, A., Paz-Ferreiro, J., & Gasco, G. (2012). Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere, 89(11), 1354-1359.
  • 37. Midgley, S. J., & Turnbull, J. W. (2003). Domestication and use of Australian acacias: case studies of five important species. Australian Systematic Botany, 16(1), 89-102.
  • 38. Mikli, M. H. (2001). Revegetation of coal mine dumps to ameliorate effects of acidic seepage (Thesis). Department of Environmental Biology. Curtin University of Technology.
  • 39. Miller, J. T., Murphy, D. J., Brown, G. K., Richardson, D. M., & Gonzalez-Orozco, C. E. (2011). The evolution and phylogenetic placement of invasive Australian Acacia species. Diversity and Distributions, 17(5), 848-860.
  • 40. Nirola, R., Mallavarapu, M., Aryal, R., & Naidu, R. (2015). Screening of metal uptake by plant colonizers growing on abandoned copper mine in Kapunda, South Australia. International Journal of Phytoremediation. http://dx.doi.org/10.1080/ 15226514.2015.1109599.
  • 41. Nouri, J., Lorestani, B., Yousefi, N., Khorasani, N., Hasani, A. H., Seif, F., et al. (2011). Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead-zinc mine (Hamedan, Iran). Environmental Earth Sciences, 62(3), 639-644.
  • 42. Reichman, S. M., Menzies, N. W., Asher, C. J., & Mulligan, D. R. (2006). Responses of four Australian tree species to toxic concentrations of copper in solution culture. Journal of Plant Nutrition, 29(6), 1127-1141.
  • 43. Reuss, J. O., & Johnson, D. W. (2012). Acid deposition and the acidification of soils and waters (Vol. 59). Springer Science & Business Media.
  • 44. Sagiroglu, A., Sasmaz, A., & Sen, O. (2006). Hyperaccumulator plants of the Keban mining district and their possible impact on the environment. Polish Journal of Environmental Studies, 15(2), 317-325.
  • 45. Seigler, D. S. (2003). Phytochemistry of Acacia-sensu lato. Biochemical Systematics and Ecology, 31(8), 845-873.
  • 46. Sinha, R. K., Herat, S., & Tandon, P. K. (2007). Phytoremediation: role of plants in contaminated site management. In Environmental Bioremediation Technologies (pp. 315-330). Berlin, Heidelberg: Springer.
  • 47. Sposito, G. (2008). The chemistry of soils. Oxford University Press.
  • 48. Stokes, D. J., Morris, V. J., & Groves, K. (2013). Environmental scanning electron microscopy (ESEM): principles and applications to food microstructures. Food Microstructures: Microscopy, Measurement and Modelling, 3.
  • 49. Thomas, R. (2013). Practical guide to ICP-MS: A tutorial for beginners. CRC Press.
  • 50. Vadassery, J., & Oelmüller, R. (2009). Calcium signaling in pathogenic and beneficial plant microbe interactions: what can we learn from the interaction between Piriformospora indica and Arabidopsis thaliana. Plant Signaling & Behavior, 4(11), 1024.
  • 51. Van Zyl, D., Sassoon, M., Digby, C., Fleury, A. M., & Kyeyune, S. (2002). Mining for the future. Main report. International Institute for Environment and Development, World Business Council for Sustainable Development, 68, 31.
  • 52. Wait, M. (2012). DMR rehabilitates derelict and ownerless mines, not abandoned sites. Mining Weekly, 17 September, viewed 11 Jan 2013 http://www.miningweekly.com/article/dmr-rehabilitates-derelict-and-ownerless-mines-not-abandoned-sites-2012-09-17.
  • 53. Yang, L., Liu, N., Ren, H., & Wang, J. (2009). Facilitation by two exotic Acacia: Acacia auriculiformis and Acacia mangium as nurse plants in South China. Forest Ecology and Management, 257(8), 1786-1793.
  • 54. Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368(2), 456-464.
  • 55. You, F., Dalal, R., Mulligan, D., & Huang, L. (2015). Quantitative measurement of organic carbon in mine wastes: methods comparison for inorganic carbon removal and organic carbon recovery. Communications in Soil Science and Plant Analysis, 46(Supp1.), 375-389.
  • 56. Zaets, I., & Kozyrovska, N. (2012). Heavy metal resistance in plants: a putative role of endophytic bacteria. In Toxicity of heavy metals to legumes and bioremediation (pp. 203-217). Vienna: Springer.
  • 57. Zengin, E., Aka Saglıker, H., & Darıcı, C. (2008). Carbon mineralization of Acacia cyanophylla soils under the different temperature and humidity conditions. Ekoloji, 18(69), 1-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61dc7b1f-088c-4798-af9d-b74fb0c5e5b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.