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Accumulation and enrichmentof heavymetals in theabove groundparts ofAustraliannative

Acacia pycnantha (Ap) and Eucalyptus camaldulensis (Ec) growing in an abandoned copper mine

located in Kapunda, South Australia have been studied. Cu and othermetals (Na, Al, K, Ca, Fe,

Zn, Cd and Pb) in plants and corresponding soils were analysed to evaluate plant interaction

with soils containing heavymetals. As per the total metal analysis of leaf and corresponding

soil samples, Ap accumulated 93.6 mg kg�1 of Cu in leaf while the corresponding soil con-

centration was 1632 mg kg�1. The Ec accumulated 5341 mg kg�1 of Cu in leaf while the con-

centration of this heavy metal in soil was 65 mg kg�1 in soil. The ESEM spectral analysis also

showed a high leaf concentration of Cu in Ec (7%) as against only 0.12% in Ap. The average

bioconcentration factor forCu,Zn,CdandPb inEcwasmuchhigher than that ofAp. Similarly,

enrichment factor was more in Ec for Cu, Zn and Pb than in Ap. In contrast, translocation

factor for only Zn and Cd was high in Ap. This study points out that Ec and Ap have different

stabilising potential in remediating heavy metals like Cu in mined soils.

© 2015 The Authors. Productioin and hosting by Elsevier B.V. on behalf of Central Mining

Institute in Katowice. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
Ecological impacts in places such as AMLs can be controlled

1. Introduction

The effect of heavymetal toxicity on biota is severe and there is

an urgency to control the level of toxicity and impact on public

health, particularly from abandoned mine lands (AMLs).
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phytoaccumulators (Ali, Khan, & Sajad, 2013). The phytor-

emediation technology is employed over polluted sites and

have served to be a boon to assist in pollution clean up efforts

(Nirola, Mallavarapu, Aryal, & Naidu, 2015). As such, copper is

one of those toxic metals that have a capacity to bind to

albumen and other smallmolecules in thehuman body as ‘free

copper’ to cause nerve damage (Brewer, 2010). An effective

phytoremediation would have saved the inhabitants near a

mine site in Mexico from elevated levels of lead and arsenic in

their blood, and are more severe in children (Gonz�alez &

Gonz�alez-Ch�avez, 2006). Identification of suitable remediating

species of plants could reduce the ecological risks of heavy

metals such as Cu to contaminate water bodies and damage

gills causingpremature death of fishes (Couillard, Courtenary&

Mcdonald, 2008). It is thought tobean important component for

identifying the species positively responsible for bio-

accumulation of pollutants being transferred from plants into

the food chain (Krumins, Goodey, & Gallagher, 2015).

A typical practice during industrial revolution was to

abandon mines once mineral extraction was conducted. The

estimated number of abandoned mines in the developed na-

tions was 630309 by the year 2000 (Van Zyl, Sassoon, Digby,

Fleury, & Kyeyune, 2002). Wait (2012) reports 5858 derelict

and ownerless mines in South Africa, and Mackasey (2004)

records 5500 derelict (abandoned) mines in Japan alone.

There are about 1800 final mine voids and 150 operational

open cutmines inWestern Australia (Doup�e& Lymbery, 2005).

Moreover, approximately 2000 derelict mine site exists only in

New South Wales, Australia that date back to the mid-1800s

(Grant, Campbell, & Charnock, 2002). However, the exact

figure of abandoned and post operational mine differs

depending on the definition of what a mine site is.

The threshold references used formetals in the surface soils

are Cd-3 mg kg�1, Cu-60 mg kg�1, Pb-300 mg kg�1, and Zn-

200 mg kg�1 with a level above 20 mg kg�1 for Cd and

300 mg kg�1 for Pb considered to be a health hazard (Ash &

Truong, 2003). The threshold reference values are important

indicators to determine soil pollution level as these values help

to measure phytoremediation degree before and after the pro-

cess. The accumulation of metals in the foliar region could be

severe due to the reoccurring of soil pollution by metal accu-

mulation in litter of mine site plants (Nouri et al., 2011). In a

study of plant behaviour with soil heavy metals in Turkey,

species suchas Euphorbiamacroclada,Verbascumcheiranthifolium

and Astragalus gummifer were found to accumulate 3e4 times

higher levels of heavy metals than those found in the soil

(Sagiroglu, Sasmaz, & Sen, 2006). In another study, Reichman,

Menzies, Asher, and Mulligan (2006) assert that plant soil

interaction explores its capacity to stabilise the heavy metal

(HM) using native plants in AMLs. Of all the available rehabili-

tation technologies, phytostabilisation is a plant's ability to

avoid exposure of pollutants to the environment by not trans-

locating metals from soil to the above ground parts (Kurek &

Majewska, 2012; Yoon, Cao, Zhou, & Ma, 2006). This is to

containheavymetal pollution by immobilizing thebioavailable

components in the earth's biosphere through revegetation of

operational, derelict andabandonedmine sites. One analysis of

metal toxicity on copper in anabandonedmine in Florida (Yoon

et al., 2006) reported the native grass species Gentiana pennelli-

ana that could stabilise heavy metals such as Pb, Cu and Zn
based on translocation factor (TF) study. Therefore, it has been

established that species of plants having high metal concen-

tration ratio (�1) of roots to soil is calledbioconcentration factor

(BCF), a low shoots to roots metal concentration ratio (�1)

known as the translocation factor (TF) and �1 ratio of metal

content in above ground plant parts over metal content in soil

known as enrichment factor (EF) is considered to be ideal HM

stabilizers (Sagiroglu et al., 2006; Sinha, Herat & Tandon, 2007).

Therefore, in the present context of the use of plant species for

minesite rehabilitation,phytoextractionorphytoaccumulation is

effectively based on EF since the metal accumulation in above

ground parts is exposed to biosphere (Baker, 1981).

We consider two native tree species growing naturally over

many years in mine site as per our earlier study (Nirola et al.,

2015). The leguminous Acacia pycnantha Benth (golden wat-

tle), andnon-leguminousEucalyptus camaldulensisDehnh (river

red-gum) were included with an aim to find answers to the

issues of bioavailability, bioaccumulation and biotransforma-

tion of metals. The Australian legume A. pycnantha (Ap) has

attributes of root nodule formation and an active microbial

activity, and give upper hand in growing resilient at the AML.

Our earlier survey and screening at themine site also indicated

more Cu accumulation in the root zone for this species (Nirola

et al., 2015). Further evidence for such resilience by legume

Acacia has been documented for sites in the Sahara Desert

(Brockwell, Searle, Jeavons, & Waayers, 2005). An estimated

annual quantity of nitrogen fixed worldwide by legumes is

70e100 million tonnes with acacias fixing a substantial

amount growing in around 5 million hectares of land world-

wide (Brockwell et al., 2005). In terms of its drought tolerance

mechanism, acacias have amorphological advantage to adapt

to arid or xeric conditions including AMLs (Brodribb & Hill,

1993). Their leaves are modified into phyllodes with an abun-

dance of thick sclerenchyma in the outer palisade mesophyll

aiding its ability to survivedrought conditions (Boughton, 1986;

Midgley&Turnbull, 2003). The other nativeAustralian species,

E. camaldulensis (Ec) is widely distributed and exhibits a sub-

stantial drought tolerance capacitywhich is attributed to deep

roots and tough leaf cuticles as seen through the ESEM image

(Bolandet al., 2006).However,most of the speciesof eucalyptus

including E. camaldulensis have indicated an allelopathic effect

on other vegetation, hampering the germination of seed

(Ahmed, Hoque,&Hossain, 2008; Khan, Hussain&Khan, 2008;

Yang, Liu, Ren,&Wang, 2009). In the current study site both of

these species were found to be dominating the different

landscapes of the polluted area. A curious thought to evaluate

two taxonomically different plants is expected to add impetus

to the issues of mine site rehabilitation with respect to avoid-

ing phytoextraction and encouraging phytostabilization.

Moreover, no earlier studies on metal uptake factors are

available for widely used A. pycnantha in mine site

rehabilitation.
2. Materials and methods

2.1. Site description and characterization

The abandoned mine at Kapunda is one of the oldest settle-

ments in Australia that mined copper till 1879 AD. The mine

http://dx.doi.org/10.1016/j.jsm.2015.11.001
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site is located 79 km fromAdelaide city. The site harbours arid

to semi-arid type of vegetation with a calcareous soil. A

thorough screening of nine prominent shrub and tree species

were undertaken to check their metal enrichment factors

namely A. pycnantha, Racosperma pycnanthum, E. camaldulensis,

Rosa canina, Lycium ferocissimum, Olea europaea, Acacia acinacea,

Schinus molle, Leptospermum lanigerum, and Pinus halepensis

(Nirola et al., 2015). Among the nine species, the two species

emerged as an outstanding metallophytes growing in the

abandoned mine site. The golden wattle (Ap) was found

growing around the periphery of the open cut area whereas

the river red gum (Ec) was mostly concentrated towards the

clayey soil downstream. Currently, the local Light Regional

Council is responsible for managing the area as a heritage site

to control pollution and to promote tourism (http://www.light.

sa.gov.au). The plan of the regional council divides the mine

site into cultural landscape (C), geological landscape (G) and

environmental (regenerative) landscape (E) within the area of

approximately 2 km (Fig. 1). Drainage from the site originates

mainly from the regenerative landscape and flows into the

Light River. The currently operated heritage mine track runs

about 1.5 kmmainly through the geological landscape (G). The

geological landscape is a barren ground, fenced as a safety

measure to avoid human intrusion. Fresh leaf, stem and roots

of Ap and Ec including the corresponding soils were collected

from G and E zones, respectively. Some of the sites having the

unconfirmed indications of earlier land refilling by off-site

soils were avoided.

2.2. Sampling and processing

The sampling plots were modelled to extend a maximum

coverage (ISO, 2002; Hazelton & Murphy, 2007), starting from

the geological landscape (G) towards the environmental

landscape (E). Altogether each of 16 Ap and Ec plots were

sampled including the associated soils as per the ecological

quadrat principles (Krebs, 1999). The soil samples were

collected from the rhizosphere at 15e20 cm depth using a

plastic trowel from two points around the plant diameter of
Fig. 1 e Site map of abandoned copper mine at Kapunda in South

‘G’ represents the Geological zone and ‘E’ represents the Enviro
2m and homogenized. Plant parts were collected from around

the canopy and bulked to form a composite sample to main-

tain a uniform representation. Fresh leaf samples were

collected in an ice filled thermo-col box (5 �C) for ESEM studies

to be analysed within 24 h. Inductively Coupled Plasma Mass

Spectrometer/Optical Emission Spectrometer (ICP-MS/OES) to

determine the total metal concentration in plant and soil

samples were employed (Thomas, 2013). The plant samples

for ICP-MS analysis were collected in the polypropylene con-

tainers and stored in laboratory at room temperature. The

plant samples were washed three times in deionised water

and oven dried at 60 �C. The oven-dried plant samples for ICP-

MS analysis (leaf, stem and roots) were ground separately into

1 mm mesh sieve powder using an electric stainless steel

grinder and were stored in the polypropylene containers. The

soil samples were air-dried and sieved using a 2 mm plastic

mesh sieve and stored in polypropylene containers for ICP-

OES analysis.
2.3. Characterization of samples

Soil characterization included texture analysis using hy-

drometer method; standard tests were employed to measure

pH, electrical conductivity, total dissolved carbon (TC), total

dissolved nitrogen (TN) and total organic carbon (TOC)

(M�endez, G�omez, Paz-Ferreiro, & Gasc�o, 2012). The potentio-

metric measurement of the supernatant suspension of soil:

deionised water (w/v) at 1:5 ratio was used to measure the pH

and EC (Sposito, 2008). A 5 gram soil was separately oven

dried to compare and record the moisture content of the soil.

A microwave accelerated reaction system (CEM-MARS X®)

served to digest metals in aqua-regia for soils and HNO3 for

plants separately following USEPA method 3015a (Agazzi &

Pirola, 2000). The digested samples were diluted up to 50 ml

using Mili-Q water and were passed through a 0.45 mm filter

using a syringe. The final test samples of 10 ml diluted sus-

pension were put into ICP tubes for analysis in the Agilent

7500c (Agilent Technologies, Tokyo, Japan).
Australia. The letter ‘C’ represents the Conservation zone,

nmental zone.

http://www.light.sa.gov.au
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Table 1 e The physico-chemical parameters of soils from
the abandoned mine site; ±se (range).

Average Plots of A.
pycnantha (Ap)

Plots of E.
camaldulensis (EC)

pH 5.8 ± 0.41 (4.4e6.8) 7.6 ± 0.75 (6.8e8.4)

EC mS 303.8 ± 121.9 (117e1276) 7242 ± 1929 (1382e13,240)

Moisture % 2.8 ± 0.52 (1.6e5.3) 4.8 ± 2 (2.8e6.8)

TC mg kg�1 260.5 ± 63.6 (38.7e540.5) 203 ± 101.98 (91e315)

TN mg kg�1 10.6 ± 3.7 (1e34.7) 35.8 ± 9.5 (26e45)

TOC mg kg�1 180 ± 55.4 (27.1e497.8) 146 ± 77.6 (68e223)

N % 0.07 ± 0.02 (0.01e0.18) 0.17 ± 0.13 (0.04e0.29)

C % 1.97 ± 0.4 (0.93e3.6) 2.7 ± 1.67 (1.1e4.4)
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The TC, TN and TOC were measured using air-dried, 2 mm

mesh sieved soil dissolved in 1:5 (w/v) deionised (Mili-Q) water

(You, Dalal, Mulligan, & Huang, 2015). The soil solutions were

agitated in end-over shaker overnight and were centrifuged at

4000 rpm for 10 min. The supernatant was analysed in the

Formacsseries total organic carbon, total nitrogen analyser

using the UV-promoted per-sulphate digestion methodology.

Analyses of total C (%) and N (%) were done by introducing

0.5 g of air-dried 2 mm mesh sieved and ground sample in a

Trumac carbon-nitrogen-sulphur (CNS) analyser (Leco® Cor-

poration, Michigan, USA). The standard blank, controlled and

cross-referencing samples were introduced to maintain

quality control after every 10 readings. The pH, EC, moisture

content (H2O%), dissolved TC (mg kg�1), dissolved TN

(mg kg�1), dissolved TOC (mg kg�1), total N % and total C %

were recorded to average the duplicates of each sample.

2.4. Spectroscopic characterization of plant matter

The bioavailability of heavy metals like copper is based on

the influence of soil physical factors (Cerqueira, Arenas-Lago,

Andrade, & Vega, 2015). The localisation of the elemental

distribution in the leaf sample by ESEM is another appro-

priate method to track the fate and status of accumulated

metals in plant tissues (Stokes, Morris, & Groves, 2013). The

process for characterization began by selecting and washing

followed by the fresh leaves being air-dried. Leaf samples

were sliced using a surgical blade into the thinnest trans-

verse sections (TS) possible. The specimens were placed on a

watch glass for sample sorting. The thinnest sections of both

the Ap and Ec were separately chosen using a light micro-

scope Digitek QC 3199. The sections were mounted on the

aluminum specimen-mounts using double-sided tape and

fitted onto the platform. The specimens were loaded into a

“FEI Quanta 450 FEG ESEM”with an attached “EDAX” Apollo X

SDD Energy Dispersive X-ray (EDX) detector for multiple ex-

aminations. High voltage (HV), low voltage (LV) and ESEM

modes were utilised to examine the three samples, respec-

tively, namely: 1) coated dry sample with 5 nm chromium by

Quorum Q150T coating unit; 2) uncoated dry sample; and 3)

uncoated fresh wet sample. However, for the uncoated fresh

but wet specimen, the temperature of the sample holder was

reduced to maintain constant water inside the cells within

the optimum pressure as per standard procedure. Photo

images and associated spectral data representing metal

concentrations were obtained from leaves of Ap and Ec from

each sampling site. As a result, the anticlinal images (TS) of

the specimen were produced in the monitor along with cor-

responding spectral images that were saved for further

analysis.

2.5. Data analysis

The data were analysed statistically using Microsoft Excel

and IBM®SPSS®21 for Windows. Each sample had separate

data arising from triplicate laboratory analysis results that

was subjected to ANOVA, including the descriptive statistics.

The data and pictures of ESEM anticlinal section of leaves

corresponding to their graphical spectrum were carefully

examined to compare with the data of ICP-MS. While
analysing the ESEM data, each picture was tagged so that it

corresponded to the radiation outcome. The spectral data

were then compared with the corresponding ICP-MS data.

The ESEM pictures were processed in Microsoft paint pro-

gramme. The mean, range and average were calculated using

triplicate result of each sample. Pearson's correlation coeffi-

cient determined the correlation between metals and soils,

roots, stems and leaves.
3. Results

The physico-chemical parameters used in the present in-

vestigations include the EC, pH, TC, TN, TOC, N (%) and C (%)

as presented in Table 1. The soil being tested in this study is

from the copper and other metals contaminated dry mine

spoil. The Ap rhizosphere soil was a sandy loam comprising

8% clay whereas the Ec rhizosphere soil had 72% clay as per

the hydrometer readings (M�endez et al., 2012). The lack of

water stagnation and low water holding capacity of soil result

into low electrical conductivity and acidic nature of soil (Reuss

& Johnson, 2012). In our study, the soil pH at Ap rhizosphere

ranged from 4.4 to 6.8 (acidic to slightly acidic) and Ec rhizo-

sphere ranged from 6.8 to 8.4 (neutral to basic). The average

electrical conductivity of soils in Ap rhizosphere was

304 mS cm�1 and Ec rhizosphere was 7242 mS cm�1 (Table 1).

Moreover, the leaf litter of Ec tends to have been responsible

for basic soil and high salinity condition.

Table 2 provides information on heavy metals present in

soil, root, stem and leaf for plants Ap and Ec. Although the

average soil concentration of Cu in E. camaldulensis rhizo-

sphere soil was lower with 64.9 mg kg�1, the plant and

particularly the stem (139.23 mg kg�1) and leaf

(5341.1 mg kg�1) recorded a higher accumulation ability

compared to Ap (Baker & Brooks, 1989).

Ap showed a decreasing trend of Cu concentration as it

travels from soil to leaf, [1631.7(soil) /

90.4(root) / 152(stem) / 93.6(leaf) mg kg�1] whereas Ec

showed a much higher accumulation capacity in root and

stem [64.9(soil) / 185.7(root) / 139(stem) / 5341(leaf) mg

kg�1] and significantly high in its leaf (Fig. 2).

The BCF, also referred to as root (below ground)-soil

quotient of Ec is �1 for Cu (3.57) and Zn (2.81), are values

regarded as a copper or zinc stabiliser. However, the BCF of

Ap is �1 for Cu (0.43), Zn (0.84), Cd(0.11) and Pb (NA) as the

http://dx.doi.org/10.1016/j.jsm.2015.11.001
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Table 2 e The average concentration of metals in the soil, root, stem and leaf of samples from Kapunda abandoned mine site; ±se(range).

Metals Soil (mg kg�1) Root (mg kg�1) Stem (mg kg�1) Leaf (mg kg�1)

Ap Ec Ap Ec Ap Ec Ap Ec

Na 2425 ± 687

(690e6554)

5557 ± 3225

(452e14,750)

4461 ± 8450

(1473e7749)

17,075 ± 9859

(0.00e34,320)

13,926 ± 4054

(2953e39,360)

13,670 ± 969

(11,930e15,740)

34,823 ± 534

(33,250e35,590)

599 ± 174

(203e1652)

Al 3160 ± 739

(539e6102)

8155 ± 2824

(1801e14,750)

293 ± 58

(157.5e667.2)

2414 ± 732

(1132e3700)

649 ± 7

(367e1002)

946 ± 24

(906e1010)

15,071 ± 2364

(4898e23,125)

1913 ± 214

(1530e2297)

K 22,079 ± 4381

(11,518e49,850)

5034 ± 1563

(2057e9017)

39,353 ± 10,611

(12,120e101,450)

38,663 ± 4835

(30,140e47,840)

55,277 ± 12,106

(22,835e114,450)

57,088 ± 1560.9

(52,870e59,750)

102,450 ± 1680

(100,000e107,300)

3836 ± 654

(1594e6591)

Ca 30,489 ± 6296

(13,730e68,340)

5707 ± 900

(4164e7823)

95,879 ± 20,433

(54,145e220,350)

128,075 ± 13,157

(104,100e153,700)

128,372 ± 19,345

(55,620e218,450)

167,325 ± 20,547

(127,900e203,500)

63,528 ± 730

(62,490e65,680)

14,334 ± 9205

(244e72,300)

Fe 5755 ± 1195

(835e11,010)

28,200 ± 7240

(12,900e47,200)

595 ± 89

(412e1173)

4059 ± 957

(2372e5819)

1288 ± 123

(715e1836)

1355 ± 50

(1268e1489)

3134 ± 408

(2365e3919)

51,649 ± 7262

(26,620e80,170)

Cu 1632 ± 241

(458e2544)

65 ± 19

(25e117)

90 ± 22

(17e199)

186 ± 27

(137e233)

152 ± 30

(45e282)

139 ± 27

(90e195)

94 ± 9

(77e110)

5341 ± 1226

(946e11,710)

Zn 63 ± 17

(11e169)

40 ± 11

(20e69)

62 ± 15

(19e126)

107 ± 17

(76e140)

96 ± 16

(35e165)

71 ± 10

(52e91)

128 ± 4

(119e136)

80 ± 13

(31e133)

Cd 0.28 ± 0.07

(0.1e0.6)

5 ± 1.45

(2.3e9)

0.28 ± 0.07

(0.1e0.6)

0.55 ± 0.01

(0.5e0.6)

0.19 ± 0.05

(0.1e0.4)

0.57 ± 0.10

(0.39e0.7)

0.27 ± 0.04

(0.2e0.3)

4.1 ± 1.0

(1.1e9)

Pb 2.6 ± 0.6

(0.0e4.8)

10.9 ± 3.1

(4.5e19.3)

2.6 ± 0.6

(0.0e4.8)

2.4 ± 0.6

(1.4e3.5)

0.8 ± 0.2

(0.1e1.6)

10.3 ± 3.9

(3.3e17.6)

2.05 ± 0.4

(1.4e2.7)

21 ± 3.7

(7.2e37)
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value of BCF �1 an considered as inferior phytostabilizer

(Sagiroglu et al., 2006; Yoon et al., 2006). Root accumulation of

HM (in Ap) is not as harmful as above ground parts accu-

mulation (in Ec) in terms of pollution and dispersion (Nouri

et al., 2011). The TF, also called shoot-root quotient, ex-

plains a plant's ability to translocate metal from its roots to

shoots and to leaves where a value of �1 is ideal for phy-

tostabilization. The TF of Ec for Cd (1.04) and Pb (3.86) is �1, a

good candidate for Pb and Cd phytoabsorption but less

preferred for phytostabilization (Yoon et al., 2006). The Ap

showed a negligible level of copper translocation (TF) along

its tissue and such a quality is acknowledged as Cu tolerance

(not translocating) ability (Lamb, Ming, Megharaj, & Naidu,

2010). An EF also called soil-leaf quotient with a value �1 is

considered to be an ideal stabilizer (Sagiroglu et al., 2006;

Yoon et al., 2006). Therefore the EF of copper in Ec is 2.17,

as Cu accumulator and 1.89 as Zn accumulator (Table 3).
Fig. 2 e The accumulation pattern of underground and above gro

in Ap rhizosphere soil (bars) and A. pycnantha (Ap1, Ap 2, Ap3,

b) Cu concentration in Ec rhizosphere soil (bars) and E. camaldu

sampling locations.
4. Discussion

4.1. Soil characteristics and metal accumulation in plants

An evaluation of metal uptake behavior of both the species Ap

and Ec growing onmine site with respect to its adaptation and

soil interaction based on their interaction with heavy metal

uptake behavior has been investigated. The extent of root and

the physico-chemical properties of soil influence the uptake

or accumulation values analysed currently using the top soil

metal concentrations (Zengin, Aka Sa�glıker, & Darıcı, 2008).

However, the correlation of soil PH to root copper concentra-

tion has R2 value of 0.58 (p � 0.05), which is a less significant

result explains the feeble effect of soil pH on metal uptake to

root zone of Ap (Fig. 2). This indicates plants ability to adapt

soil ionic impact onmetal uptake as reflectedwith Apwhere a
und parts of metallophyte (SD-%, N¼ 3) a) Cu concentration

Ap4 ¼ 4 £ 4) root, stem and leaf at 16 sampling locations.

lensis (Ec1, Ec2, Ec3, Ec4 ¼ 4 £ 4) root, stem and leaf at 16
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highest soil copper yielded less foliar concentration. In

contrast, there is a relatively higher concentration ofmetals in

Ec leaf and stem compared to soil and root concentration

growing on basic pH soil condition (Table 2). Therefore, this

result generally indicates that Apwhile growing on acidic soils

translocate less metals than the Ec that is growing on basic

soil condition is a natural adaptation. This result could be also

attributed to the metal enrichment in Ec leaves through root

uptake which is called systemic uptake, and through bark

called dermal sorption, or by a combination of both (Chenery

et al., 2012; Reichman, Menzies, Asher, & Mulligan, 2006). Our

study shows that the accumulation level of Cu in Ap and Ec is

different in root, stem and leaf suggesting the independent

behaviour of each species against copper (Fig. 2).
4.2. Soil e plant interaction

The ESEM spectral analysis shows a higher level of Ca depo-

sition in the vascular bundle of Apwith EF value 78.9. Thus, Ap

has an affinity to Ca salts as evident from the results shown in

Fig. 3. According to Maksymiec (1998) there is a physiological

effect on cellular processes of higher plants. One such effect is

due to Cu2þ where enzymatic and leaf senescence is brought

about with Ca2þ moving into xylem through apoplast

pathway. Moreover, the study also points out about the

photosynthetic apparatus where Cu2þ and Ca2þ are involved

in the process of escaping metal toxicity. The Ap accumu-

lating more Ca in the vascular zone is a possible explanation

for its premature death after almost every 10 years due to the

Ca flakes clogging vascular bundles (Brockwell et al., 2005;

Gibson et al.; 2011; Miller, Murphy, Brown, Richardson, &

Gonz�alez-Orozco, 2011). However, the accumulation of Ca in

Ap vascular bundle leading to a mutualistic interaction be-

tween plant and microbe can be defined as “a necessary evil”.

Vadassery and Oelmüller (2009) assert a similar view

regarding the mutual relationship existing between the plant

and microbe based on Ca signalling. This relationship has an

advantage for Ap with its root nodules being able to survive in

contaminated soils due to the ability to draw moisture and

nutrition such as nitrogen from the rhizosphere with the help

of rhizobia present in root nodules and micorrhiza present in

root tissue (Gibson et al., 2011). Moreover, some species of

Acacia (A. nilotica and A. senegal) were found growing well in

calcareous soil supports Ca-philic and accumulating behav-

iour of this genera (Chaplot, 2013).

One study in Western Australia (Mikli, 2001) reported that

E. camaldulensiswas found to grow well on riverine sites quiet

similar to the habitat in the current study site. Mikli in his

thesis further reports that Eucalyptus robusta and E. camaldu-

lensis struggled to grow in poor coal mine soils even though

they tolerated acidic soils. One of the possible reasons for

getting poor growth of Ec was due to sandy soil as found in

arid to semi-arid mine sites that prevented deeper root

penetration (Boland et al., 2006). In the stressed soil condi-

tion, the root hairs struggle to settle inside the nutrient

deficient soil, and preferentially, Ec is found to grow on grey

heavy clayey soils with basic pH soil condition is consistent to

our current finding as well (Brooker, Slee, Connors, & Duffy,

2005; Costermans, 1989; Haling et al., 2013). Generally, the

http://dx.doi.org/10.1016/j.jsm.2015.11.001
http://dx.doi.org/10.1016/j.jsm.2015.11.001


Fig. 3 e ESEM spectral diagram with images in inset. a) the anticlinal section of Ap xylem bundle in the inset with spectral

diagram of highlighted area in red circle shows Ca flake deposition. b) the anticlinal section of Ap xylem vessel in inset with

spectral diagram of the highlighted area in red circle shows salts of chlorine and potassium respectively, at 2.4 and 3.4 keV.

c) the anticlinal section of Ec leaf in inset with spectral diagram of highlighted area in red circle shows Ca deposition in

mesophyll zone at 3.6 keV. d) the anticlinal cross-cut of Ec leaf in inset with spectral diagram of highlighted red circle shows

deposition of Cu and Zn in xylem vessel.
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acacia species have been widely preferred to eucalyptus for

afforestation and greening programs because it can grow in

poor soils faster, can fix nitrogen, and revegetate even in

nutrient deficient soil (Boyes, Gunton, Griffiths, & Lawes,

2011; Gawronski, Greger, & Gawronska, 2011). Therefore, in

our study area containing acidic soil this leguminous Ap

species has been evaluated to address the phytotoxicity of

metals on plants (Seigler, 2003; Zaets & Kozyrovska, 2012). Ap

rhizosphere soil confirmed that this species grows well in

acidic soil with low EC, low carbon and nitrogen content as

presented in Table 1.

4.3. Accumulation factors of heavy metals on Ap and Ec

The observed metal concentration in leaf, stem and root were

used to measure BCF, TF and EF to determine whether a plant

is an excluder, extractor or stabiliser (Baker, 1981). As per the

current investigation, Ap has a better edge over Ec because of

its high BCF (high root accumulation) and low EF (lower leaf
accumulation) ratio (Masvodza, Dzomba, Mhandu, &

Masamha, 2013). However, there is no convincing earlier

data for both species regarding their interaction with heavy

metal, particularly in abandoned mine soils. According to

Baker and Brooks (1989), plants that accumulate

>1000 mg kg�1 of Cu, Co, Cr, Ni or Pb and >10,000 mg kg�1 of

Mn or Zn are called hyper-accumulators, and the present

investigation implies to Ec leaf accumulation. So, the uptake

factor values actually explain the qualitative aspect rather

than the quantitative one. The ESEM data of the leaf indicates

that Ap is an excluder of Cu because of its low spectroscopic

readings (Fig. 3). This is in contrast to the findings of

Masvodza, Dzomba, Mhandu, and Masamha (2013) who re-

ported hyperaccumulation of Cu in Acacia saligna and Acacia

polycantha grown in mine slime dams in Harare, Zimbabwe.

Baker (1981) suggests that it is the foliar concentration that

disqualifies a plant to act as a stabiliser. In the present study,

the foliar concentration of Cu in Ap was comparatively lower

http://dx.doi.org/10.1016/j.jsm.2015.11.001
http://dx.doi.org/10.1016/j.jsm.2015.11.001
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than in Ec, indicating that AP a more suitable candidate for

phytoremediation.
5. Conclusions

The present study of abandoned mine site at a semi-arid

climate provides insight into the ability of native trees to

interact with metals present in soil. Our data suggest that E.

camaldulensis is a hyperaccumulator as evident from the EF

value. We suggest that the use of a native species like legu-

minous A. pycnantha has a better edge over E. camaldulensis to

stabilise pollutants such as Cu in a long run. The Ca build-up

in the vascular region of Ap, with BCF�1 for Cu, Zn, Cd and Pb

are issues that need further verification in the future. Overall,

this study recommends to avoid E. camaldulensis growth in

copper polluted mine sites.
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