PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Creation of vector Bessel beams with arbitrary polarization modes using mode extraction principle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
According to the current research on polarization generation methods, it is difficult to create multi-mode vector Bessel beams in free space by extracting arbitrary polarization modes from a single beam. This is due to the fact that the polarization and phase distributions between multiple polarization modes can interfere with each other. In this paper, the mode extraction principle is combined with the optical pen technique to extract arbitrary polarization modes from a single Bessel beam, and the number, position and phase of Bessel beams can be arbitrarily regulated to achieve the multi-mode coexistence of vector Bessel beams in free space. The experimental results are consistent with the theoretical analysis. This work is not only important for the in-depth study of vector Bessel beams, but also will facilitate the development of optical manipulation, optical communication, microscopic imaging and other applications.
Czasopismo
Rocznik
Strony
575--589
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
  • University of Shanghai for Science and Technology, Shanghai 200093, China
autor
  • University of Shanghai for Science and Technology, Shanghai 200093, China
autor
  • University of Shanghai for Science and Technology, Shanghai 200093, China
autor
  • University of Shanghai for Science and Technology, Shanghai 200093, China
autor
  • University of Shanghai for Science and Technology, Shanghai 200093, China
autor
  • University of Shanghai for Science and Technology, Shanghai 200093, China
  • University of Shanghai for Science and Technology, Shanghai 200093, China
Bibliografia
  • [1] DURNIN J., MICELI J.J., EBERLY J.H., Diffraction-free beams, Physical Review Letters 58(15), 1987: 1499-1501.
  • [2] AL-AWFI S., Theory of evanescent Bessel beams with a metallic sheet, Optica Applicata 43(3), 2013: 539-550.
  • [3] CHEN B.Y., HUANG X.S., GOU D.Z., Rapid volumetric imaging with Bessel-Beam three-photon microscopy, Biomedical Optics Express 9(4), 2018: 1992-2000.
  • [4] DROBCZYNSKI S., DUS-SZACHNIEWICZ K., SYMONOWICZ K., Spectral analysis by a video camera in a holographic optical tweezers setup, Optica Applicata 43(4), 2013: 739-746.
  • [5] BALTRUKONIS J., ULCINAS O., ORLOV O., High-order vector Bessel-Gauss beams for laser micromachining of transparent materials, Physical Review Applied 16(3), 2021: 034001.
  • [6] RIOUX M., TREMBLAY R., BÉLANGER P.A., Linear, annular, and radial focusing with axicons and applications to laser machining, Applied Optics 17(10), 1978: 1532-1536.
  • [7] ZHAO Y., SUN H., ZHANG X., WANG Y., The interference characteristics of light-waves from a tilted and defocused cat-eye optical lens irradiated by laser beam, Optica Applicata 41(3), 2011: 617-630.
  • [8] ZHANG Y.X., DONG W.M., ZHANG Y., All-fiber hollow Bessel-like beam for large-size particle trap, Journal of Lightwave Technology 39(10), 2021: 3291-3296.
  • [9] ZHANG Y.X., TANG X.Y., LIU Z.H., Multiple particles 3-D trap based on all-fiber Bessel optical probe, Journal of Lightwave Technology 35(18), 2017: 3849-3853.
  • [10] GAO X., ZHANG D., MEI T., RUI F., ZHUANG S., Focus shaping of the radially polarized Bessel-Gauss beam with a sine-azimuthal variation wavefront, Optica Applicata 43(3), 2013: 567-582.
  • [11] GAO X., GAO M., HU S., GUO H., ZHUANG S., High focusing of radially polarized Bessel-modulated Gaussian beam, Optica Applicata 40(4), 2010: 965-974.
  • [12] YUAN Y.S., LEI T., LI Z.H., Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams, Scientific Reports 7, 2017: 42276.
  • [13] OUBEI H.M., DURAN J.R., JANJUA B., 48 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication, Optics Express 23(18), 2015: 23302-23309.
  • [14] WANG G., LI Y., SHAN X., MIAO Y., GAO X., Hermite–Gaussian beams with sinusoidal vortex phase modulation, Chinese Optics Letters 18(4), 2020: 80-84.
  • [15] BANDO K., YABUUCHI S., LI M.L., Bessel-beam illumination Raman microscopy, Biomedical Optics Express 13(6), 2022: 3161-3170.
  • [16] SHI H.T., SHEN G.Y., QI H.Y., Noise-tolerant Bessel-beam single-photon imaging in fog, Optics Express 30(7), 2022: 12061-12068.
  • [17] LU Z.H., GUO Z.F., FAN M.S., Tunable Bessel beam shaping for robust atmospheric optical communication, Journal of Lightwave Technology 40(15), 2022: 5097-5106.
  • [18] GUO L., TANG Z., Vectorial structure and beam quality of vector-vortex Bessel-Gauss beams in the far-field, Chinese Optics Letters 10(Suppl.), 2012: S12601.
  • [19] MILIONE G., LAVERY M.P.J., HUANG H., REN Y., XIE G., NGUYEN T.A., KARIMI E., MARRUCCI L., NOLAN D.A., ALFANO R.R., WILLNER A.E., 4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer, Optics Letters 40, 2015: 1980.
  • [20] NDAGANO B., NAPE I., COX M.A., ROSALES-GUZMAN C., FORBES A., Creation and detection of vector vortex modes for classical and quantum communication, Journal of Lightwave Technology 36, 2018: 292-301.
  • [21] DORN R., QUABIS S., LEUCHS G., Sharper focus for a radially polarized light beam, Physical Review Letters 91, 2003: 233901.
  • [22] HANSEN S.G., Source mask polarization optimization, Journal of Micro/Nanolithography, MEMS, and MOEMS 10, 2011: 1-10.
  • [23] WANG H., SHI L., LUKYANCHUK B., SHEPPARD C., CHONG C.T., Creation of a needle of longitudinally polarized light in vacuum using binary optics, Nature Photonics 2, 2008: 501-505.
  • [24] BOOTH M.J., Adaptive optical microscopy: the ongoing quest for a perfect image, Light: Science & Applications 3, 2014: e165.
  • [25] NDAGANO B., NAPE I., COX M.A., ROSALES-GUZMAN C., FORBES A., Creation and detection of vector vortex modes for classical and quantum communication, Journal of Lightwave Technology 36, 2018: 292-301.
  • [26] COZZOLINO D., POLINO E., VALERI M., CARVACHO G., BACCO D., SPAGNOLO N., OXENLØWE L.K., SCIARRINO F., Air-core fiber distribution of hybrid vector vortex-polarization entangled states, Advanced Photonics 1, 2019: 1.
  • [27] FICKLER R., LAPKIEWICZ R., PLICK W.N., KRENN M., SCHAEFF C., RAMELOW S., ZEILINGER A., Quantum entanglement of high angular momenta, Science 338, 2012: 640-643.
  • [28] RAO A.S., SAMANTA G.K., On-axis intensity modulation-free, segmented, zero-order Bessel beams with tunable ranges, Optics Letters 43(13), 2018: 3029-3032.
  • [29] NIV A., BIENER G., KLEINER V., Propagation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam-Berry phase optical elements, Optics Letters 29(3), 2004: 238-240.
  • [30] YANG J.Q., HAKALA T.K., FRIBERG A.T., Generation of arbitrary vector Bessel beams on higher-order Poincaré spheres with an all-dielectric metasurface, Physical Review A 106(2), 2022: 023520.
  • [31] LI P., ZHANG Y., LIU S., Quasi-Bessel beams with longitudinally varying polarization state generated by employing spectrum engineering, Optics Letters 41(20), 2016: 4811-4814.
  • [32] LIN Z.M., LI X.W., ZHAO R.Z., High-efficiency Bessel beam array generation by Huygens metasurfaces, Nanophotonics 8(6), 2019: 1079-1085.
  • [33] WENG X.Y., MIAO Y., ZHANG Q.L., Extraction of inherent polarization modes from a single light beam, 2021. https://arxiv.org/abs/2102.11620v1
  • [34] WENG X., SONG Q., LI X., GAO X., GUO H., QU J., ZHUANG S., Free-space creation of ultralong anti-diffracting beam with multiple energy oscillations adjusted using optical pen, Nature Communications 9, 2018: 5035.
  • [35] RICHARDS B., WOLF E., Electromagnetic diffraction in optical systems. IⅡ. Structure of the image field in an aplanatic system, Proceedings of the Royal Society A 253, 1959: 358-379.
  • [36] WANG G.X., KANG X.Y., SUN X.J., Generation of arbitrary perfect optical vortex in free space by optical pen, Optics Express 30(18), 2022: 31959-31970.
  • [37] MILIONE G., LAVERY M.P.J., HUANG H., REN Y., XIE G., NGUYEN T.A., KARIMI E., MARRUCCI L., NOLAN D.A., ALFANO R.R., WILLNER A.E., 4×20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode(de) multiplexer, Optics Letters 40, 2015: 1980-1983.
  • [38] MARRUCCI L., MANZO C., PAPARO D., Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media, Physical Review Letters 96(16), 2006: 163905.
  • [39] GAO C., FU S., Vortex Beams, Tsinghua University Press, Beijing, 2019: 288-289 (in Chinese).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61d5ee9d-f18e-4fa7-8019-4fa0497d49c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.