PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Techniki bioremediacji substancji ropopochodnych i metody oceny ich efektywności

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Techniques of petroleum compounds bioremediation and methods of assessment of their effectiveness
Języki publikacji
PL
Abstrakty
PL
W ostatnich latach bardzo duże znaczenie w usuwaniu ksenobiotyków mają metody biologiczne. Wiele gatunków mikroorganizmów występujących w środowisku glebowym ma zdolność do biodegradacji związków ropopochodnych. Ich rozkład jednak zwykle trwa latami. Intensyfikację tego procesu uzyskuje się głównie poprzez biostymulację i/lub wykorzystanie biopreparatów w formie wolnej biomasy lub immobilizowanej na nośnikach, takich jak alginian, akrylan czy karagen. Aktywność degradacyjna mikroorganizmów zależy od bioróżnorodności środowiska oraz parametrów fizykochemicznych, w tym dostępności związków odżywczych, temperatury, pH czy stężenia tlenu. Z tego powodu podczas bioremediacji bardzo ważnym aspektem jest monitorowanie zmian w składzie związków chemicznych oraz bioróżnorodności zanieczyszczonego środowiska. W artykule przedstawione zostały informacje na temat typów bioremediacji, wpływu czynników fizykochemicznych na efektywność rozkładu ksenobiotyków oraz metody monitorowania przemian związków chemicznych i dynamiki populacji mikroorganizmów w glebie.
EN
In the recent years the demand for petroleum and products associated with its processing, which contributes to the progressive contamination of the environment, has greatly increased. Crude oil consists primarily of hydrocarbons, such as alkanes, cycloalkanes, aromatic hydrocarbons, and polycyclic aromatic hydrocarbons (PAHs). Bioremediation is a technique that combines achievements of microbiology and microbial ecology, biochemistry, genetics and chemistry. Xenobiotics may be removed in the place of contamination (in situ) or preceded by the transfer of contaminated soil from its natural area (ex situ). Many species of microorganisms found in the soil are capable of biodegradation of petroleum compounds. However, the natural biodegradation of petroleum compounds in soil usually takes a long time. The intensification of this process is achieved primarily by biostimulation and/or bioaugmentation. The first method is based on environmental enrichment in nutrients and ensuring optimal environmental conditions (temperature, pH, oxygen concentration). Bioaugmentation relies on the introduction into the environment selected strains of microorganisms capable of degrading xenobiotics in free cells form or immobilized biomass on carriers, such as alginate, acrylate, or carrageenan. Microbial degradation activity depends on biodiversity and physicochemical parameters, including the availability of nutrients, temperature, pH, and oxygen concentration. For this reason, during the bioremediation, a very important aspect is to monitor the changes in the chemical composition of the contaminated environment and the soil biodiversity. Nowadays, we have many laboratory techniques to identify microorganisms. Phenotypic methods include e.g. fatty acid analysis, cell wall structure, the enzyme activity or substrate utilization profile. One of the disadvantages in the analysis of the phenotype is that the full information contained in the genome is never expressed, because it is directly related to the environmental conditions (e.g. growth conditions in the laboratory). Nucleic acid is an excellent tool to study because it is characteristic of all living organisms. For this reason, the molecular biology methods are increasingly used for the identification of microorganisms (such as PCR, hybridization, sequencing, metagenomics). The article presents information about the types of bioremediation, the impact of physical and chemical factors on the efficiency of the xenobiotics decay and methods of monitoring of chemical transformations and dynamics of microorganisms populations in the soil.
Rocznik
Strony
459--476
Opis fizyczny
Bibliogr. 82 poz.
Twórcy
  • Uniwersytet Opolski, Wydział Przyrodniczo-Techniczny, Samodzielna Katedra Biotechnologii i Biologii Molekularnej,, ul. Kardynała Kominka 6, 45-032 Opole
  • Uniwersytet Opolski, Wydział Przyrodniczo-Techniczny, Samodzielna Katedra Biotechnologii i Biologii Molekularnej,, ul. Kardynała Kominka 6, 45-032 Opole
Bibliografia
  • [1] Molina M.C., Gonzalez N., Bautista L.F., Sanz R., Simarro R., Sanchez I., Sanz J. L., Isolation and genetic identification of PAH degrading bacteria from a microbial consortium, Biodegradation 2009, 20, 789-800.
  • [2] Liu W., Wang X., Wu L., Chen M., Tu C., Luo Y., Christie P., Isolation, identification and characterization of Bacillus amyloliquefaciens BZ-6, a bacterial isolate for enhancing oil recovery from oily sludge, Chemosphere 2012, 87, 1105-1110.
  • [3] Mittal A., Singh P., Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills, Indian J. Exp. Biol. 2009, 47, 760-765.
  • [4] Nowak J., Bioremediacja gleb z ropy i jej produktów, Biotechnologia 2008, 80, 97-108.
  • [5] Van Hamme J.D., Singh A., Ward O.P., Recent advances in petroleum microbiology, Microbiol. Mol. Biol. Rev. 2003, 67, 4:503, 503-549.
  • [6] Mrozik A., Piotrowska-Seget Z., Łabużek S., Bacteria in bioremediation of hydrocarbon-contaminated environments, Post. Microbiol. 2005, 44, 3, 227-238.
  • [7] Vidali M., Bioremediation. An overview, Pure Appl. Chem. 2001, 73, 1163-1172.
  • [8] Moldes A.B., Paradelo R., Rubinos D., Devesa-Rey R., Cruz J.M., Barral M.T., Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus, J. Agric. Food. Chem. 2011, 59, 17, 9443-7.
  • [9] Singleton D.R., Jones M.D., Richardson S.D., Aitken M.D., Pyrosequence analyses of bacterial communities during simulated in situ bioremediation of polycyclic aromatic hydrocarboncontaminated soil, Appl. Microbiol. Biotechnol. 2012.
  • [10] Gentry T.J., Rensing C., Pepper I.L., New approaches for bioaugmentation as a remediation technology, Crit. Rev. Environ. Sci. Technol. 2004, 34, 447-494.
  • [11] Janbandhu A., Fulekar M.H., Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment, J. Haz. Mat. 2011, 187, 1-3, 333-340.
  • [12] Mikeskova H., Novotny C., Svobodova K., Interspecific interactions in mixed microbial cultures in a biodegradation perspective, Appl. Microbiol. Biotechnol. 2012, 95, 861-870.
  • [13] Das N., Chandran P., Microbial degradation of petroleum hydrocarbon contaminants: An overview, Biotech. Res. Inter. 2011, Article ID 941810.
  • [14] Mearns A.J., Cleaning oiled shores: putting bioremediation to the test, Spill Sci. Technol. B. 1997, 4, 4, 209-217.
  • [15] Stefanis C., Alexopoulos A., Voidarou C., Vavias S., Bezirtzoglou E., Principal methods for isolation and identification of soil microbial communities, Folia Microbiol. 2012, DOI 10.1007/s12223-012-0179-5.
  • [16] Chikere C.B., Okpokwasili G.C., Chikere B.O., Monitoring of microbial hydrocarbon remediation in the soil, 3 Biotech. 2011, 1, 117-138.
  • [17] Paliwal V., Puranik S., Purohit H.J., Integrated perspective for effective bioremediation, Appl. Biochem. Biotechnol. 2012, 166, 903-924.
  • [18] Alisi C., Musella R., Tasso F., Ubaldi C., Manzo S., Cremisini C., Sprocati A.R., Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance, Sci. Total. Environ. 2009, 407, 3024-3032.
  • [19] Boopathy R. Factors limiting bioremediation technologies, Bioresource Technol. 2000, 74, 63-67.
  • [20] Brusseau M.L., The impact of physical, chemical and biological factors on biodegradation, Proceedings of the International Conference on Biotechnology for Soil Remediation: Scientific Bases and Practical Applications, ed. R. Serra, C.I.P.A. S.R.L., Milan, Italy 1998, 81-98.
  • [21] Paul E.A., Clark F.E., Soil Microbiology and Biochemistry, Second edition, Academic Press, USA, 1998.
  • [22] Atlas R.M., Effects of temperature and crude oil composition on petroleum biodegradation, J. App. Microbiol. 1975, 30, 3, 396-403.
  • [23] Cooney J.J., The Fate of Petroleum Pollutants in Fresh Water Ecosystems, [in:] Petroleum Microbiology, ed. R.M. Atlas, Macmillan, New York, NY, USA 1984, 399-434.
  • [24] Insam H., Goberna M., Use of Biolog for the community level physiological profiling (CLPP) of environmental samples, Mol. Microb. Ecol. Manual. 2004, 4, 853-860.
  • [25] Morgan P., Watkinson J.W., Microbiological methods for the cleanup of soil and ground water contaminated with halogenated organic compounds, FEMS Microbiol. Lett. 1989, 63, 4, 277-299.
  • [26] Varma A., Oelmuller R., Advanced Techniques in Soil Microbiology, Springer, Germany, 2007.
  • [27] Kanaly R.A., Harayama S., Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria, J. Bacteriol. 2000, 182, 2059-2067.
  • [28] Pacwa-Płociniczak M., Płaza G.A., Piotrowska-Seget Z., Cameotra S.S., Environmental applications of biosurfactants: recent advances, Int. J. Mol. Sci. 2011, 18, 12, 1, 633-54.
  • [29] Margesin R., Hammerle M., Tscherko D., Microbial activity and community composition durning bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fetilizers and incubation time, Microbial Ecol. 2007, 53, 259-269.
  • [30] Kwapisz E., Problemy biodegradacji ropy naftowej, I Krajowy Kongres Biotechnologii, 14 sekcja: Biotechnologia w ochronie środowiska, Wrocław, 23-24.09.1999, 227-229.
  • [31] Panicker G., Mojib N., Aislabie J., Detection, expression and quantitation of the biodegradative genes in Antarctic microorganisms using PCR, A. Van Leeuw. J. Microb. 2010, 97, 275-287.
  • [32] Phillips C.J., Paul E.A., Prosser J.I. Quantitative analysis of ammonia oxidizing bacteria using competitive PCR, FEMS Microbiol. Ecol. 2000, 32, 167-175.
  • [33] Ratajczak A., Geidorfer W., Hillen W., Alkane hydroxylase from Acinetobacter sp. strain ADP-1 is encoded by alkM and belongs to a new family of bacterial integralmembrane hydrocarbon hydroxylases, Appl. Environ. Microbiol. 1998, 64, 1175-1179.
  • [34] Whyte L.G., Hawari J., Zhou E., Bourbonniere L., Inniss W.E., Greer C.W., Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp., Appl. Environ. Microbiol. 1998, 64, 2578-2584.
  • [35] Mesarch M.B., Nakatsu C.H., Nies L., Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR, Appl. Environ. Microbiol. 2000, 66, 678-683.
  • [36] Hamann C., Hegemann J., Hildebrandt A., Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization, FEMS Microbiol. Lett. 1999, 173, 255-263.
  • [37] Zylstra G.J., Gibson D.T., Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli, J. Biol. Chem. 1989, 264, 14940-14946.
  • [38] Furukawa K., Arimura N., Purification and properties of 2,3-dihydroxybiphenyl dioxygenase from polychlorinated biphenyl-degrading Pseudomonas pseudoalcaligenes and Pseudomonas aeruginosa carrying the cloned bphC gene, J. Bacteriol. 1987, 169, 924-927.
  • [39] Greń I., Guzik U., Wojcieszyńska D., Łabużek S., Molekularne podstawy rozkładu ksenobiotycznych związków aromatycznych, Biotechnologia 2008, 2, 81, 58-67.
  • [40] Vignesh R., Badhul Haq M.A., Srinivasan M., Biodegradation prospective of microbes, Int. J. Environ. Sci. 2011, 2, 2, 741-754.
  • [41] Peck A.M., Analytical methods for the determination of persistent ingredients of personal care products in environmental matrices, Anal. Bioanal. Chem. 2006, 386, 907-939.
  • [42] Richardson S.D., Environmental mass spectrometry: emerging contaminants and current issues, Anal. Chem. 2008, 80, 4373-4402.
  • [43] Gojgic-Cvijovic G.D., Milic J.S., Solevic T.M., Beskoski V.P., Ilic M.V., Djokic L.S., Narancic T.M., Vrvic M.M., Biodegradation of petroleum sludge and petroleum polluted soil by a bacterial consortium: a laboratory study, Biodegradation 2012, 23, 1-14.
  • [44] Jin H.M., Kim J.M., Lee H.J., Madsen E.L., Jeon C.O., Alteromonas as a key agent of polycyclic aromatic hydrocarbon biodegradation in crude oil-contaminated coastal sediment, Environ. Sci. Technol. 2012, 46, 7731-7740.
  • [45] Liang Y., Van Nostrand J.D., Wang J., Zhang X., Zhou J., Li G., Microarray-based functional gene analysis of soil microbial communities during ozonation and biodegradation of crude oil, Chemosphere 2009, 75, 193-199.
  • [46] Zhang Z., Inoue C., Li. G., Coordination in phenanthrene biodegradation: pyruvate as microbial demarcation, Bull. Environ. Contam. Toxicol. 2010, 85, 581-584.
  • [47] Hill G.T., Mitkowski N.A., Aldrich-Wolfe L., Emele L.R., Jurkonie D.D., Ficke A., Maldonado-Ramirez S., Lynch S.T., Nelson E.B., Methods for assessing the composition and diversity of soil microbial communities, Appl. Soil Ecol. 2000, 15, 25-36.
  • [48] Makut M.D., Ishaya P., Bacterial species associated with soils contaminated with used petroleum products in Keffi town, Nigeria, Afr. J. Microbiol. Res. 2010, 4, 16, 1698-1702.
  • [49] Olga P., Petar K., Jelena M., Srdjan R., Screening method for detection of hydrocarbonoxidizing bacteria in oil-contaminated water and soil specimens, J. Microbiol. Meth. 2008, 74, 110-113.
  • [50] Sprocati A.R., Alisi C., Tasso F., Marconi P., Sciullo A., Pinto V., Chiavarini S., Ubaldi C., Cremisini C., Effectiveness of a microbial formula, as a bioaugmentation agent, tailored for bioremediation of diesel oil and heavy metal co-contaminated soil, Process Biochemistry 2012, 47, 1649-1655.
  • [51] Tabacchioni S., Chiarini L., Bevivino A., Cantale C., Dalmastri C., Bias caused by using different isolation media for assessing genetic diversity of a natural microbial population, Microb. Ecol. 2000, 40, 169-176.
  • [52] Kirk J.L., Beaudette L.A., Hart M., Moutoglis P., Klironomos J.N., Lee H., Trevors J.T., Methods of studying soil microbial diversity, J. Microbiol. Methods 2004, 58, 169-188.
  • [53] Fang C., Radosevich M., Fuhrmann J.J., Characterization of rhizosphere microbial community in five similar grass species using FAME and Biolog analyses, Soil. Biol. Biochem. 2001, 33, 679-682.
  • [54] Kozdrój J., van Elsas J.D., Structural diversity of microbial communities in arable soils of a heavily industrialized area determined by PCR-DGGE fingerprinting and FAME profiling, Appl. Soil Ecol. 2001, 17, 31-42.
  • [55] Pratt B., Riesen R., Johnston C.G., PLFA analyses of microbial communities associated with PAH-contaminated riverbank sediment, Microb. Ecol. 2012, 64, 3, 680-691.
  • [56] Wang P., Wang H., Wu L., Di H., He Y., Xu J., Influence of black carbon addition on phenanthrene dissipation and microbial community structure in soil, Environ. Pollut. 2012, 161, 121-127.
  • [57] Mavrodi D.V., Kovalenko N.P., Sokolov S.L., Parfenyuk V.G., Kosheleva I.A., Boronin A.M., Identification of the key genes of naphthalene catabolism in soil DNA, Microbiology 2003, 72, 5, 597-604.
  • [58] Osborn A.M., Moore E.R.B., Timmis K.N., An evaluation of terminal-restriction fragment length polymorphisms (T-RFLP) analysis for the study of microbial community structure and dynamics, Environ. Microbiol. 2000, 2, 39-50.
  • [59] von der Weid I., Marques J.M., Cunha C.D., Lippi R.K., dos Santos S.C.C., Rosado A.S., Lins U., Seldin L., Identification and biodegradation potential of a novel strain of Dietzia cinnamea isolated from a petroleum-contaminated tropical soil, Syst. Appl. Microb. 2007, 30, 331-339.
  • [60] Yusof N., Hassan M.A., Yee P.L., Tabatabaei M., Othman M.R., Mori M., Wakisaka M., Sakai K., Shirai Y., Nitrification of high-strength ammonium landfill leachate with microbial community analysis using fluorescence in situ hybridization (FISH), Waste Manag. Re. 2011, 29, 6, 602-611.
  • [61] Zhang D.C., Mörtelmaier C., Margesin R., Characterization of the bacterial archaeal diversity in hydrocarbon-contaminated soil, Sci. Total. Environ. 2012, 1, 184-196.
  • [62] Cheema S., Bassas-Galia M., Sarma P.M., Lal B., Arias S., Exploiting metagenomic diversity for novel polyhydroxyalkanoate synthases: production of a terpolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyoctanoate) with a recombinant Pseudomonas putida strain, Bioresource Technol. 2012, 103, 1, 322-328.
  • [63] Glogauer A., Martini V.P., Faoro H., Couto G.H., Müller-Santos M., Monteiro R.A., Mitchell D.A., de Souza E.M., Pedrosa F.O., Krieger N., Identification and characterization of a new true lipase isolated through metagenomic approach, Microb. Cell. Fact. 2011, 15, 10, 54.
  • [64] Frąc M., Jezierska-Tys S., Różnorodność mikroorganizmów środowiska glebowego, Post. Mikrobiol. 2010, 40, 1, 47-58.
  • [65] Söderberg K.H., Probanza A., Jumpponenc B.E., The microbial community in the rhizosphere determined by community-level physiological profiles (CLPP) and direct soiland CFU-PLFA techniques, Appl. Soil. Ecol. 2004, 25, 135-145.
  • [66] Frostegard A., Tunlid A., Baath E., Use and misuse of PLFA measurements in soils, Soil Biol. Biochem. 2010, 1-5.
  • [67] Raszka A., Ziembińska A., Wiechetek A., Metody i techniki biologii molekularnej w biotechnologii środowiskowej, Środowisko, Czas. Tech. 2009, 2.
  • [68] Kur J., Lewandowski K., Krawczyk B., Samet A., Metody genotypowania bakterii z rodzaju Acinetobacter, Post. Mikrobiol. 2000, 39, 271-290.
  • [69] Li W., Raoult D., Fournier P-E., Bacterial strain typing in the genomic era, FEMS Microbiol. Rev. 2009, 33, 892-916.
  • [70] Vandamme P., Pot B., Gillis M., de Vos P., Kersters K., Swings J., Polyphasic taxonomy, a consensus approach to bacterial systematic, Microbiol. Rev. 1996, 60, 407-438.
  • [71] Rosselló-Mora R., Amann R., The species concept for prokaryotes, FEMS Microbiol. Rev. 2001, 25, 39-67.
  • [72] Christensen H., Hansen M., Sørensen J., Counting and size classification of active soil bacteria by fluorescence in situ hybridization with an rRNA oligonucleotide probe, Appl. Environ. Microbiol. 1999, 65, 1753-1761.
  • [73] Singh B.K., Munro S., Reid E., Ord B., Potts J.M., Paterson E., Millard P., Investigating microbial community structure in soils by physiological, biochemical molecular methods, Eur. J. Soil. Sci. 2006, 57, 72-82.
  • [74] Van Elsas J.D., Boersma F.G.H., A review of molecular methods to study the microbiota of soil and the mycosphere, Eur. J. Soil. Biol. 2011, 47, 77-87.
  • [75] Handelsman J., Metagenomics: application of genomics to uncultured microorganisms, Microbiol. BioI. Rev. 2004, 68, 669-685.
  • [76] Woese C. R., Fox G. E., Phylogenetic structure of the prokaryotic domain: the primary kingdoms, P. Natl. Acad. Sci. USA 1997, 74, 5088-5090.
  • [77] Li W., Raoult D., Fournier P-E., Bacterial strain typing in the genomic era, FEMS Microbiol. Rev. 2009, 33, 892-916.
  • [78] Slonczewski J.L., Foster J.W., Microbiology - An Evolving Science, W.W. NORTON, London 2008.
  • [79] Ebrahimi M., Sarikhani M.R., Fallah R., Assessment of biodegradation efficiency of some isolated bacteria from oilcontaminated sites in solid and liquid media containing oil-compounds, Inter. Res. J. App. B. Sci. 2012, 3, 1, 138-147.
  • [80] Szpala K., Krzyśko-Łupicka T., Konfederat T., Sposób oczyszczania gruntów zanieczyszczonych związkami organicznymi. Biuletyn Urzędu Patentowego 17 Patent 390375, 2011.
  • [81] Goodfellow M., O’Donnell A. G., Roots of bacterial systematics, [w:] Handbook of Bacterial Systematics, Eds. M. Goodfellow, A.G. O’Donnell. Academic Press, San Diego 1993.
  • [82] Atzel B., Szoboszlay S., Mikuska Z., Kriszt B., Comparison of phenotypic and genotypic methods for the detection of environmental isolates of Pseudomonas aeruginosa, Int. J. Hyg. Environ. Health 2008, 211, 143-155.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61d5b317-2c08-4a03-ad1c-5672544973aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.