PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Scaling laws for the FE solutions of induction machines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper a scaling approach for the solution of 2D FE models of electric machines is proposed. This allows a geometrical and stator and rotor resistance scaling as well as a rewinding of a squirrel cage induction machine enabling an efficient numerical optimization. The 2D FEM solutions of a reference machine are calculated by a model based hybrid numeric induction machine simulation approach. In contrast to already known scaling procedures for synchronous machines the FEM solutions of the induction machine are scaled in the stator-current-rotor-frequency-plane and then transformed to the torque-speed-map. This gives the possibility to use a new time scaling factor that is necessary to keep a constant field distribution. The scaling procedure is validated by the finite element method and used in a numerical optimization process for the sizing of an electric vehicle traction drive considering the gear ratio. The results show that the scaling procedure is very accurate, computational very efficient and suitable for the use in machine design optimization.
Rocznik
Strony
677--695
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wz.
Twórcy
autor
  • RWTH Aachen University, Institute of Electrical Machines (IEM) Schinkelstraße 4, 52062 Aachen, Germany
autor
  • Ulm University, Institute of Energy Conversion and Storage Albert-Einstein-Allee 47, 89081 Ulm, Germany
autor
  • RWTH Aachen University, Institute of Electrical Machines (IEM) Schinkelstraße 4, 52062 Aachen, Germany
Bibliografia
  • [1] Mallik S., Mallik K., Barman A., Maiti D., Biswas S.K., Deb N.K., Basu S., Efficiency and cost optimized design of an induction motor using genetic algorithm, IEEE Transactions on Industrial Electronics, vol. 64, no. 12, pp. 9854–9863 (2017).
  • [2] Žarko D., Design of premium efficiency (ie3) induction motors using evolutionary optimization and scaling laws, Przeglad Elektrotechniczny, vol. 1, pp. 183–186 (2016).
  • [3] Einfuegen S., Efficiency and cost optimized design of an induction motor using genetic algorithm, IEEE Transactions on Industrial Electronics, vol. 64, no. 12, pp. 9854–9863 (2017).
  • [4] von Pfingsten G., Steentjes S., Hameyer K., Operating point resolved loss calculation approach in saturated induction machines, IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 2538–2546 (2017).
  • [5] Žarko D., Stipetič S., Martinovic M., Kovačić M., Jercic T., Hanic Z., Reduction of computational efforts in finite element-based permanent magnet traction motor optimization, IEEE Transactions on Industrial Electronics, vol. 65, no. 2, pp. 1799–1807 (2018).
  • [6] von Pfingsten G., Hameyer K., Highly efficient approach to the simulation of variable-speed induction motor drives, IET Science, Measurement Technology, vol. 11, no. 6, pp. 793–801 (2017).
  • [7] Wood R.W., Scaling magnetic systems, IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 2685–2688 (2011).
  • [8] Hsieh K.T., Kim B.K., One kind of scaling relations on electromechanical systems, IEEE Transactions on Magnetics, vol. 33, no. 1, pp. 240–244 (1997).
  • [9] Stipetič S., Žarko D., Popescu M., Ultra-fast axial and radial scaling of synchronous permanent magnet machines, IET Electric Power Applications, vol. 10, no. 7, pp. 658–666 (2016).
  • [10] Alberti L., Bianchi N., Boglietti A., Cavagnino A., Core axial lengthening as effective solution to improve the induction motor efficiency classes, IEEE Transactions on Industry Applications, vol. 50, no. 1, pp. 218–225 (2014).
  • [11] Bone J.C.H., Influence of rotor diameter and length on the rating of induction motors, Electric Power Applications, IEE Journal on, vol. 1, no. 1, pp. 2–6 (1978).
  • [12] Lange E., Henrotte F., Hameyer K., An efficient field-circuit coupling based on a temporary linearization of fe electrical machine models, IEEE Transactions on Magnetics, vol. 45, no. 3, pp. 1258–1261 (2009).
  • [13] Williamson S., Begg M.C., Calculation of the resistance of induction motor end rings, IEE Proceedings B – Electric Power Applications, vol. 133, no. 2, pp. 54–60 (1986).
  • [14] Ramakrishnan K., Stipetič S., Gobbi M., Mastinu G., Optimal sizing of traction motors using scalable electric machine model, IEEE Transactions on Transportation Electrification, vol. 4, iss. 1, pp. 314–321 (2018).
  • [15] Ramakrishnan K., Stipetič S., Gobbi M., Mastinu G., Multiobjective optimization of electric vehicle powertrain using scalable saturated motor model, in 2016 Eleventh International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, pp. 1–6 (2016).
  • [16] von Pfingsten G., Nell M., Hameyer K., Hybrid simulation methods for induction machine calculation reduction of simulation effort by coupling static fea with transient fea and analytic formulations, in 2017 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF) Book of Abstracts, Lodz, Poland, pp. 1–2 (2017).
  • [17] Stipetič S., Žarko D., Popescu M., Scaling laws for synchronous permanent magnet machines, in 2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, p. 1–7 (2015).
  • [18] Stipetič S., Goss J., Calculation of efficiency maps using scalable saturated flux-linkage and loss model of a synchronous motor, in 2016 XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, pp. 1380–1386 (2016).
  • [19] Žarko D., Kovačić M., Stipetič S., Vuljaj D., Optimization of electric drives for traction applications, in 2017 19th International Conference on Electrical Drives and Power Electronics (EDPE), Dubrovnik, Croatia, pp. 15–32 (2017).
  • [20] Nell M., Lenz J., Hameyer K., Efficient numerical optimization of induction machines by scaled fe simulations, in 2018 XIII International Conference on Electrical Machines (ICEM), Alexandroupoli, Greece, pp. 198–204 (2018).
  • [21] von Pfingsten G., Steentjes S., Hameyer K., Transient approach to model operating point dependent losses in saturated induction machines, in 2016 XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, pp. 626–632 (2016).
  • [22] Stipetič S., Miebach W., Žarko D., Optimization in design of electric machines: Methodology and workflow, in 2015 Intl Aegean Conference on Electrical Machines Power Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical Electronic Equipment (OPTIM) 2015 Intl Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION), Side, Turkey, pp. 441–448 (2015).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61d43bf2-740a-4734-8e2a-17e817c364a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.