PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of Polyphenols and Antioxidants Extraction from Mentha Suaveolens Subspecies Timija

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study delves into the influence of varying solvent compositions on the extraction of total phenolic compounds (TPC) and the antioxidant activities of extracts from Mentha suaveolens subsp. timija leaves and stems. The extraction process is conducted using ultrasound-assisted extraction via an ultrasonic bath. Employing a surface mixture design approach, we explored the singular use of water (W), methanol (M), and ethanol (E), as well as their combinations. The outcomes demonstrate that solvents’ compositions significantly influence the extraction of TPC, with noteworthy synergistic effects observed in specific combinations, such as a ratio of W:M (1/2:1/2). The scavenging activity of DPPH and the total antioxidant capacity (TAC) were also evaluated, indicating that certain combinations of solvents, particularly those involving methanol and water, enhance the antioxidant activities. The results reveal that solvent compositions significantly influence TPC extraction, with notable synergistic effects observed in specific mixtures, such as W:M (1/2:1/2). The Pareto chart analysis highlights the substantial contributions of methanol, ethanol, and water to TPC recovery and antioxidant activities. The findings underscore the importance of solvent optimization for extracting bioactive compounds, providing valuable insights for researchers and industries seeking to harness the full potential of this species in various applications.
Twórcy
  • Laboratory of Functional Ecology and Environmental Engineering, Faculty of Science and Technology, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
  • Laboratory of Functional Ecology and Environmental Engineering, Faculty of Science and Technology, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
autor
  • Laboratory of Applied Organic Chemistry, Faculty of Science and Technology, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
autor
  • OLMANBGPE, Nador Multidisciplinary Faculty, Mohammed 1st University, Oujda, Morocco
Bibliografia
  • 1. Aazza, S. 2021. Application of multivariate optimization for phenolic compounds and antioxidants extraction from moroccan cannabis sativa waste. Journal of Chemistry, 1–11. https://doi.org/10.1155/2021/9738656
  • 2. Al-Mijalli, S.H., Assaggaf, H., Qasem, A., El-Shemi, A.G., Abdallah, E.M., Mrabti, H.N., Bouyahya, A. (2022). Antioxidant, antidiabetic, and antibacterial potentials and chemical composition of Salvia officinalis and Mentha suaveolens Grown Wild in Morocco. Advances in Pharmacological and Pharmaceutical Sciences, 2022, 1–10. https://doi.org/10.1155/2022/2844880
  • 3. Arnao, M.B. 2000. Some methodological problems in the determination of antioxidant activity using chromogen radicals: A practical case. Trends in Food Science & Technology, 11(11), 419–421. https://doi.org/10.1016/S0924-2244(01)00027-9
  • 4. Aznar-Ramos, M.J., Razola-Díaz, M. del C., Verardo, V., Gómez-Caravaca, A.M. (2022). Comparison between ultrasonic bath and sonotrode extraction of phenolic compounds from mango peel by-products. Horticulturae, 8(11), 1014. https://doi.org/10.3390/horticulturae8111014
  • 5. Boeing, J.S., Barizão, É.O., e Silva, B.C., Montanher, P.F., de Cinque Almeida, V., Visentainer, J.V. 2014a. Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis. Chemistry Central Journal, 8(1), 48. https://doi.org/10.1186/s13065-014-0048-1
  • 6. Boeing, J.S., Barizão, É.O., e Silva, B.C., Montanher, P.F., de Cinque Almeida, V., Visentainer, J.V. 2014b. Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis. Chemistry Central Journal, 8(1), 48. https://doi.org/10.1186/s13065-014-0048-1
  • 7. Božović, M., Pirolli, A., Ragno, R. 2015. Mentha suaveolens Ehrh. (Lamiaceae) essential oil and its main constituent piperitenone oxide: biological activities and chemistry. Molecules, 20(5), 8605– 8633. https://doi.org/10.3390/molecules20058605
  • 8. Carpenter, J. 2011. Quality management in projects. In project management in libraries, archives and museums, 151–170. Elsevier. https://doi.org/10.1016/B978-1-84334-566-4.50008-4
  • 9. DiCiaulaa, M.C., Lopesa, G.C., Scarminiob, I.S., Melloa, J.C.P. de. 2014. Optimization of solvent mixtures for extraction from bark of schinus terebinthifolius by a statistical mixture-design technique and development of a uv-vis spectrophotometric method for analysis of total polyphenols in the extract. Quim. Nova, 37(1), 158–163.
  • 10. do Carmo, M.A.V., Pressete, C.G., Marques, M.J., Granato, D., Azevedo, L. 2018. Polyphenols as potential antiproliferative agents: scientific trends. Current Opinion in Food Science, 24, 26–35. https://doi.org/10.1016/j.cofs.2018.10.013
  • 11. Dorta, E., Lobo, M.G., Gonzalez, M. 2012. Reutilization of mango byproducts: study of the effect of extraction solvent and temperature on their antioxidant properties. Journal of Food Science, 77(1). https://doi.org/10.1111/j.1750-3841.2011.02477.x
  • 12. El-Akhal, J., Oliveira, A.P., Bencheikh, R., Valentão, P., Andrade, P.B., Morato, M. 2022. Vasorelaxant mechanism of herbal extracts from mentha suaveolens, conyza canadensis, teucrium polium and salvia verbenaca in the aorta of wistar rats. Molecules, 27(24), 8752. https://doi.org/10.3390/molecules27248752
  • 13. Han, H., Wang, S., Rakita, M., Wang, Y., Han, Q., Xu, Q. 2018. Effect of Ultrasound-Assisted Extraction of Phenolic Compounds on the Characteristics of Walnut Shells. Food and Nutrition Sciences, 9(8), 1034–1045. https://doi.org/10.4236/fns.2018.98076
  • 14. Ksibi, I. El, Slama, R. Ben, Faidi, K., Ticha, M. Ben, M’henni, M.F. 2015. Mixture approach for optimizing the recovery of colored phenolics from red pepper (Capsicum annum L.) by-products as potential source of natural dye and assessment of its antimicrobial activity. Industrial Crops and Products, 70, 34–40. https://doi.org/10.1016/j.indcrop.2015.03.017
  • 15. Lattanzio, V. 2013. Phenolic Compounds: Introduction. In: Natural Products, 1543–1580. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_57
  • 16. Liao, J., Xue, H., Li, J. 2022. Extraction of phenolics and anthocyanins from purple eggplant peels by multi-frequency ultrasound: Effects of different extraction factors and optimization using uniform design. Ultrasonics Sonochemistry, 90, 106174. https://doi.org/10.1016/j.ultsonch.2022.106174
  • 17. Libbey, L.M., Walradt, J.P. 1968. 3,5-di-Tert-butyl-4-hydroxytoluene (BHT) as an artifact from diethyl ether. Lipids, 3(6), 561–561. https://doi.org/10.1007/BF02530903
  • 18. Liu, Y., She, X.-R., Huang, J.-B., Liu, M.-C., Zhan, M.-E. 2018. Ultrasonic-extraction of phenolic compounds from Phyllanthus urinaria: optimization model and antioxidant activity. Food Science and Technology, 38(suppl 1), 286–293. https://doi.org/10.1590/1678-457x.21617
  • 19. Liyana-Pathirana, C.M., Shahidi, F. 2006. Antioxidant properties of commercial soft and hard winter wheats (Triticum aestivum L.) and their milling fractions. Journal of the Science of Food and Agriculture, 86(3), 477–485. https://doi.org/10.1002/jsfa.2374
  • 20. Lourenço, S.C., Moldão-Martins, M., Alves, V.D. 2019. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules, 24(22), 4132. https://doi.org/10.3390/molecules24224132
  • 21. Ma, T., Wang, Q., Wu, H. 2010. Optimization of extraction conditions for improving solubility of peanut protein concentrates by response surface methodology. LWT - Food Science and Technology, 43(9), 1450–1455. https://doi.org/10.1016/j.lwt.2010.03.015
  • 22. Marcheafave, G.G., Tormena, C.D., Pauli, E.D., Rakocevic, M., Bruns, R.E., Scarminio, I.S. 2019. Experimental mixture design solvent effects on pigment extraction and antioxidant activity from Coffea arabica L. leaves. Microchemical Journal, 146, 713–721. https://doi.org/10.1016/j.microc.2019.01.073
  • 23. Nawaz, H., Shad, M.A., Rehman, N., Andaleeb, H., Ullah, N. 2020. Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences, 56. https://doi.org/10.1590/s2175-97902019000417129
  • 24. Rocha, J. De C.G., Procópio, F.R., Mendonça, A.C., Vieira, L.M., Perrone, Í.T., Barros, F.A.R.De, Stringheta, P.C. 2017. Optimization of ultrasound-assisted extraction of phenolic compounds from jussara (Euterpe edulis M.) and blueberry (Vaccinium myrtillus) fruits. Food Science and Technology, 38(1), 45–53. https://doi.org/10.1590/1678-457x.36316
  • 25. Roseiro, L.B., Duarte, L.C., Oliveira, D.L., Roque, R., Bernardo-Gil, M.G., Martins, A.I., Sepúlveda, C., Almeida, J., Meireles, M., Gírio, F.M., Rauter, A.P. 2013. Supercritical, ultrasound and conventional extracts from carob (Ceratonia siliqua L.) biomass: Effect on the phenolic profile and antiproliferative activity. Industrial Crops and Products, 47, 132–138. https://doi.org/10.1016/j.indcrop.2013.02.026
  • 26. Salomon, S., Sevilla, I., Betancourt, R., Romero, A., NuevasPaz, L., AcostaEsquijarosa, J. 2014. Extraction of mangiferin from Mangifera indica L. leaves using microwaveassisted technique. Emirates Journal of Food and Agriculture, 26(7), 616. https://doi.org/10.9755/ejfa.v26i7.18188
  • 27. Vera Candioti, L., De Zan, M.M., Cámara, M.S., Goicoechea, H.C. 2014. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta, 124, 123–138. https://doi.org/10.1016/j.talanta.2014.01.034
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61d1b3d3-6602-46bb-b2b4-3c6b0fa7c025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.