PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical radius inequalities for finite sums of operators

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we obtain some sharp inequalities for numerical radius of finite sums of operators. Moreover, we give some applications of our result in estimation of spectral radius. We also compare our results with some known results.
Wydawca
Rocznik
Strony
963--970
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
  • Center of Excellence in Analysis on Algebraic Structures, Department of Pure Mathematics, Ferdowsi University Of Mashhad, P. O. Box 1159, Mashhad 91775, Mashhad, Iran
  • Center of Excellence in Analysis on Algebraic Structures, Department of Pure Mathematics, Ferdowsi University Of Mashhad, P. O. Box 1159, Mashhad 91775, Mashhad, Iran
  • Department of Mathematics, Faculty of Science, Mashhad Branch Islamic Azad University, Mashhad, Iran
Bibliografia
  • [1] R. Bhatia, Matrix Analysis, Grad. Texts in Math. 169, Springer, New York, 1997.
  • [2] H. Bohr, A theorem concerning power series, Proc. Lond. Math. Soc. 2(13) (1914), 1–5.
  • [3] S. S. Dragomir, Power inequalities for the numerical radius of a product of two operators in Hilbert spaces, Sarajevo J. Math. 5(18) (2009), 269–278.
  • [4] M. Fujii, R. Nakamoto, H. Watanabe, The Heinz–Kato–Furuta inequality and hyponormal operators, Math. Japon. 40 (1994), 469–472.
  • [5] K. E. Gustafsun, D. K. M. Rao, Numerical Range, Springer-Verlag, New York, 1997.
  • [6] M. EL. Haddad, F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 182(2) (2007), 133–140.
  • [7] P. R. Halmos, A Hilbert Space Problem Book, 2nd ed. Grad. Texts in Math. 19, Springer, New York, 1982.
  • [8] G. H. Hardy, J. E. Littewood, G. Polya, Inequalities, 2nd ed, Cambridge University Press, Cambridge, 1988.
  • [9] F. Kittaneh, Nots on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci. 24(2) (1988), 283–293.
  • [10] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168(1) (2005), 73–80.
  • [11] F. Kittaneh, Spectral radius inequalities for Hilbert space operator, Proc. Amer. Math. Soc. 134(2) (2005), 385–390.
  • [12] F. Kittaneh, Commutator inequalities associated with the polar decomposition, Proc. Amer. Math. Soc. 120(5) (2002), 1279–1283.
  • [13] K. Shebrawi, H. Albudawi, Numerical radius and operator norm inequalities, J. Inequal. Appl. 11 (2009).
  • [14] J. S. Matharu, M. S. Moslehian, J. S. Aujla, Eigenvalue extensions of Bohr’s inequality, Linear Algebra Appl. 435(2) (2011), 270–276.
  • [15] C. A. McCarthy, Cp , Israel J. Math. 5 (1967), 249–271.
  • [16] M. E. Omidvar, M. S. Moslehian, A. Niknam, Some numerical radius inequalities for Hilbert space operator, Involve J. Math. 2(4) (2009), 469–476.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61cf0b79-ad5b-447b-9de4-eb04b53830f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.