PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Distribution of Heavy Metals in Apple Tissues Grown in the Soils of Industrial Area

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The exposure of heavy metals in the Drenas site – Kosovo has risen dramatically in the last 30 years because of mining and smelting activities. The study investigated the heavy metal in soil, accumulation in different parts of apple trees near the industrial sites of Drenas. The accumulation ratio values of heavy metals were calculated to assess the potential health risks. The mean concentrations of the heavy metals in the soil were in the following order of magnitude Ni > Zn > Fe > Cr > Cu > Pb > Cd > As, while that in the apples were in the order of magnitude Ni > Cr > Fe > Cu > Pb > Zn > Cd > As, in the leaves – Fe > Zn > Cu > Cr > Ni > Pb > Cd > As and in the shoots – Zn > Fe > Cu > Cr > Ni > Pb > Cd > As. Compared to control, the contents of analyzed metals from plant tissues of apple trees in the contaminated area were significantly higher (p<0.001). The concentration of Ni, Pb, Cr, Fe etc. in the apple tissue increased along with the heavy metal content in soils in the polluted area. The high accumulation ratio values for Pb (1.1), Cd (0.62), Cr (0.93) and Ni (0.46) were characteristic for the investigated species and indicate the accumulation ability.
Słowa kluczowe
Rocznik
Strony
57--66
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Agricultural University of Tirana, Koder-Kamëz, Tirana, Republic of Albania
  • Agricultural University of Tirana, Koder-Kamëz, Tirana, Republic of Albania
  • University of Prishtina, Department of Biology, Republic of Kosovo
Bibliografia
  • 1. Akgüç N, Özyiğit II, Yarcı C. 2008. Pyracantha coccinea Roem. (Rosaceae) as a biomonitor for Cd, Pb and Zn in Mugla Province (Turkey). Pakistan Journal of Botany 40 (4): 1767–1776.
  • 2. Huseyinova R, Kutbay HG, Bilgin A, Kılıc D, Horuz A, Kirmanoglu C. 2009. Sulphur and Some Heavy Metal Contents in Foliage of Corylus avellana and Some Roadside Native Plants in Ordu Province, Turkey. Ekoloji 18 (70): 10–16.
  • 3. Vontsa D., Grimanis A., Samara C. 1986. Trace elements in vegetables grown in industrial areas in relation to soil and air particulate matter, Environmental Sollution, 94, 325–335.
  • 4. McLaughlin, M. J., Smolders, E., Degryse, F., & Rietra, R. 2011. Uptake of metals from soil into vegetables. In: F.A. Swartjes (Ed.), Dealing with contaminated sites: from theory towards practical application. Heidelberg: Springer. doi:10.1007/ 978–90–481–9757–6_8.
  • 5. Khan, S., Rehman, S., Zeb Khan, A., Amjad Khan, M., & Tahir Shah, M. 2010. Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotoxicology and Environmental Safety, 73(7), 1820–1827.
  • 6. Brioschi, L., Steinmann, M., Lucot, E., Pierret, M. C., Stille, P., Prunier, J., & Badot, P. M. 2013. Transfer of rare earth elements (REE) from natural soil to plant systems: implications for the environmental availability of anthropogenic REE. Plant and Soil, 366, 143–163. doi:10.1007/s11104–012–1407–0.
  • 7. García, M.Á., Alonso, J., & Melgar, M.J. 2009. Lead in edible mushrooms: levels and bioaccumulation factors. Journal of Hazardous Materials, 167(1–3), 777–783.
  • 8. Gupta S, Nayek S, Saha RH, Satpati S. 2008. Assessment of heavy metal accumulation in macrophyte, agricultural soil and crop plants adjacent to discharge zone of sponge iron factory. Environ Geol 55: 731–739.
  • 9. Karavoltsos S, Sakellari A, Dimopoulos M, Dasenakis M, Scoullos M. 2002. Cadmium content in foodstuffs from the Greek market. Food Additives Contam 19: 954–962.
  • 10. Costa, G., & Morel, J.L. 1993. Cadmium uptake by Lupinus albus (L): cadmium excretion, a possible mechanism of cadmium tolerance. Journal of Plant Nutrition, 16(10), 1921–1929.
  • 11. Kim, Y.Y., Yang, Y.Y. & Lee, Y., 2002. Pb and Cd uptake in rice roots. Physiologia Plantarum, (116): 368–372.
  • 12. Zahoor A, Jafar M, Saqib M. 2003. Elemental distribution in summer fruits of Pakistan. Nutr Food Sci 33: 203–207.
  • 13. Anonymous. 2002. Regulation of setting maximum levels for certain contaminants in foodstuffs. Official Gazette, Issue 24908, 16 October.
  • 14. Tuzen M, Soylak M. 2006. Chromium speciation in environmental samples by solid phase extraction on Chromosorb 108. J Hazard Mater 129: 266–273.
  • 15. Yang Z, LuW, Long Y, Bao X, Yang Q. 2011. Assessment of heavy metals contamination in urban topsoil from Changchun City, China. J Geochem Exp 108: 27–38.
  • 16. Zornoza P, Robles S, Martin N. 1999. Alleviation of nickel toxicity by ammonium supply to sunflower plants. Plant Soil 208: 221– 226.
  • 17. Poniedzialek, M., Ciura, J., Stokowska, E. and Sekara, A. 1999. Control of the contamination of lettuce crop with heavy metals by the selection of a site and a cultivar. Scientific Works of the Lithuanian Institute of Horticulture and Lithuanian University of Agriculture. Hort. Veg. Grow. 18: 146–150.
  • 18. Lokeshwari H, Chandrappa G.T. 2006. Impact of heavy metal contamination of Bellandur Lake on soil and cultivated vegetation. Current Science, 91, 622–627.
  • 19. Zhen H. 2008. Pollution characteristics of heavy metal in grains and fruits at both sides of ShenyangDalian expressway. Journal of Meteorology and Environment, 24, 1–5.
  • 20. Xiao Z.L, Cong Q, Qu J. 2010. Assessment of heavy metal pollution in orchard soil and its affections to fruit quality around molybdenum mining area. Science Technology and Engineering, 10, 5831–5834.
  • 21. Chaudhry, F.M., Sharif, M., Latif, A., Qureshi, R.H. 1973. Zinc-copper antagonism in the nutrition of rice (Oryza sativa L.). Plant and Soil, 38(3): 573–580.
  • 22. FAO/WHO 1995. Codex General Standard for Contaminants and Toxins in Food and Feed (193–1995), pp. 31–32.
  • 23. Liu J, Wang J, Qi J, Li X, Chen Y, Wang C, Wu Y. 2012. Heavy Metal Contamination in Arable Soils and Vegetables around a Sulfuric Acid Factory, China. Clean Soil Air Water 40: 766–772.
  • 24. Zahoor, T. 2003. High molecular weight glutenin subunit composition and multivariate analysis for quality traits of common wheats grown in Pakistan. Ph.D. Thesis, Inst. Food Sci. & Tech., University of Agriculture, Faisalabad, Pakistan.
  • 25. De Santis D, Moresi M. 2007. Production of alizarin extracts from Rubia tinctorum and assessment of their dyeing properties. Ind Crops Products, 26: 151–162.
  • 26. D’Mello JPF. 2003. Food safety: Contaminants and toxins. Wallingford, Oxon and Cambridge, MA: CABI Publishing. pp. 480.
  • 27. Adamo, P., Iavazzo, P., Albanese, S., Agrelli, D., De Vivo, B., & Lima, A. 2014. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils. Science of the Total Environment, 500–501, 11–22.
  • 28. Rizaj, M., Beqiri, E., McBow, Z., Kongoli, F. 2008. The mineral base and productive capacities of metals and non-metals of Kosovo. JOM, 60(8), 18–22.
  • 29. Mapanda F, Mangwayana E.N, Nyamangara J, Giller K E. 2007. Uptake of heavy metals by vegetables irrigated using wastewater and the subsequent risks in Harare, Zimbabwe. Physics and Chemistry of the Earth (Parts A/B/C), 32, 1399–1405.
  • 30. Kabata-Pendias, A. and Pendias, H. 1989. Trace Elements in the Soil and Plants. CRC Press, Florida.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61cc52e1-19db-485b-b7b7-37a369b76162
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.