PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical investigations of transient thermal loading of steam turbines for SMR plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the well-known technologies that fit well into the goal of reduction of greenhouse gas emissions is nuclear energy. In particular, the change in approach to the design and construction of nuclear power plants led to the development of small modular reactors (SMRs), which are characterized by a broader range of possible applications than large nuclear reactors and the ability to flexibly operate as per load demand. This paper presents an analysis of the thermal loads of a steam turbine rotor operating in a power plant with SMR. Steam-water cycle and turbine train of a 300 MW unit are presented. High-pressure steam turbine rotor and its thermal loading due to varying steam conditions are investigated for a cold startup designed with consideration of the thermal characteristics of nuclear reactors. It was shown by numerical simulations that steam condensation on rotor surfaces plays a crucial role in determining its thermal behaviour. Comparison with conventional rotors has shown that the thermal loading of nuclear turbine rotors is lower and more stable than that of conventional turbines.
Rocznik
Strony
197--220
Opis fizyczny
Bibliogr. 42 poz., rys.
Twórcy
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Qvist S., Gładysz P., Bartela Ł., Sowiżdżał A.: Retrofit decarbonization of coal power plants – a case study for Poland. Energies 14(2021), 1, 120.
  • [2] International Atomic Energy Agency: Energy, Electricity and Nuclear Power Estimates for the Period up to 2050, IAEA Reference Data Series No. 1. IAEA-RDS-1/4, Vienna 2022.
  • [3] Kubowski J.: Nuclear Power Plants. WNT, Warszawa 2017 (in Polish).
  • [4] Chmielniak T.: Power Generation Technologies. PWN, Warszawa 2021 (in Polish).
  • [5] Dudek M., Jaszczur M., Kolenda Z.: Thermodynamic analysis of modular hightemperature nuclear reactor coupled with the steam cycle for power generation. Arch. Thermodyn. 40(2019), 4, 49–66.
  • [6] Fic A., Składzień J., Gabriel M.: Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle. Arch. Thermodyn. 36(2015), 1,3–18.
  • [7] Stanek W., Szargut J., Kolenda Z., Czarnowska L.: Influence of nuclear power unit on decreasing emissions of greenhouse gases. Arch. Thermodyn. 36(2015), 1, 55–65.
  • [8] Rusanov A., Subotin V., Shvetsov V., Rusanov R., Palkov S., Palkov I., Chugay M.: Application of innovative solutions to improve the efficiency of the LPC flow part of the 220 MW NPP steam turbine. Arch. Thermodyn. 43(2022), 1, 63–87.
  • [9] Bartela Ł., Gładysz P., Andreades C., Qvist S., Zdeb J.: Techno-economic assessment of coal-fired power unit decarbonization retrofit with KP-FHR small modular reactors. Energies 14(2021), 9, 2557.
  • [10] Liou J.: What are Small Modular Reactors (SMRs)?. IAEA. https://www.iaea.org/ newscenter/news/what-are-small-modular-reactors-smrs (accessed 14 Aug. 2023).
  • [11] Łukowicz H., Bartela Ł., Gładysz P., Qvist S.: Repowering a coal power plant steam cycle using modular light-water reactor technology. Energies 16(2023), 7, 3083.
  • [12] Homa D., Kosman W., Bartela Ł.: Cooperation of turbine island with 4th generation nuclear reactor. In: Proc. XXV Jubilee Cong. of Thermodynamicists, Gdańsk, 11-14 Sept. 2023, Book of papers (J. Cieśliński, D. Mikielewicz, J. Wajs, Eds.), 104–107. (in Polish).
  • [13] Irnational Atomic Energy Agency: Advances in Small Modular Reactor Technology Developments. A Supplement to: IAEA Advanced Reactors Information System (ARIS). IAEA,Vienna 2022.
  • [14] Bartela Ł., Gładysz P., Ochmann J., Qvist S., Sancho L.M.: Repowering a coal power unit with small modular reactors and thermal energy storage. Energies 15(2022), 16, 5830.
  • [15] Domański R.: Modular nuclear reactors – state of knowledge and prospects. In: Proc. XXV Jubilee Cong. of Thermodynamicists, Gdańsk, 11-14 Sept. 2023, Book of papers (J. Cieśliński, D. Mikielewicz, J. Wajs, Eds.), 72–75. (in Polish).
  • [16] Chmielniak T.: Thermodynamic Cycles of Thermal Turbines. Fluid-Flow Machinery Vol. 2. Ossolineum – Wydawn. PAN, Wrocław 1988 (in Polish).
  • [17] Perycz S.: Steam and Gas Turbines. Fluid-Flow Machinery Vol. 10. Ossolineum – Wydawn. PAN, Wrocław 1992 (in Polish).
  • [18] Ochmann J., Łukowicz H., Bartela Ł.: Analysis of the influence of operating conditions of the steam turbine determined by location conditions on its operating characteristics. In: Proc. XXV Jubilee Cong. of Thermodynamicists, Gdańsk, 11-14 Sept. 2023, Book of papers (J. Cieśliński, D. Mikielewicz, J. Wajs, Eds.), 239–242. (in Polish).
  • [19] International Atomic Energy Agency: Status report 97 – Advanced Boiling Water Reactor (ABWR). IAEA Advanced Reactors Information System (ARIS), Jul 2011.
  • [20] Status report 100 – Economic Simplified Boiling Water Reactor (ESBWR). IAEA Advanced Reactors Information System (ARIS). IAEA,Vienna 2021.
  • [21] GE Hitachi Nuclear Energy: BWRX-300 General Description. Revision E.005N9751, 2023.
  • [22] Jun G., Kolovratnik M., Hoznedl M.: Wet steam flow in 1100 MW turbine. Arch. Thermodyn. 42(2021), 3, 63–85.
  • [23] Laskowski R., Smyk A., Jurkowski R., Ance J., Wołowicz M., Uzunow N.: Selected aspects of the choice of live steam pressure in PWR nuclear power plant. Arch. Thermodyn. 43(2022), 3, 85–109.
  • [24] Laskowski R., Smyk A., Ruciński A., Szymczyk J.: Determining steam condensation pressure in a power plant condenser in off-design conditions. Arch. Thermodyn.42(2021), 3, 45–62.
  • [25] Orlen: Development program of BWRX-300 in Poland, 2023. https://www.orlen.pl/pl/zrownowazony-rozwoj/projekty-transformacyjne/smr (accessed 10 Sept. 2023)
  • [26] Wacławiak K., Okrajni J.: Transient heat transfer as a leading factor in fatigue of thick-walled elements at power plants. Arch. Thermodyn. 40(2019), 3, 43–55.
  • [27] Adamowicz A.: Axisymmetric FE model to analysis of thermal stresses in a brakedisc. JTAM 53(2015), 2, 357–370.
  • [28] Adamowicz A.: Finite element anlysis of the 3D thermal stress state in a brake disc. JTAM 54(2016), 1, 205–218.
  • [29] Zienkiewicz O.C., Taylor R.L., Zhu J.Z.: The Finite Element Method: It’s Basis and Fundamentals. Elsevier Butterworth-Heinemann, Burlington 2005.
  • [30] Hetnarski R.B., Eslami M.R.: Thermal Stresses – Advanced Theory and Applications. Springer, 2009.
  • [31] Chmielniak T., Kosman G.: Thermal Loads of Steam Turbines. WNT, Warszawa1990 (in Polish).
  • [32] Banaszkiewicz M.: Numerical investigation of crack initiation in the impulse steam turbine rotors subjected to thermo-mechanical fatigue. Appl. Therm. Eng. 138(2018), 761–773.
  • [33] Banaszkiewicz M.: On-line determination of transient thermal stresses in critical steam turbine components using a two-step algorithm. J. Therm. Stresses 40(2017),6, 690–703.
  • [34] Marinescu G., Ehrsam A., Sell M., Brunner P.: Experimental investigation into thermal behaviour of steam turbine components. Part 3 – startup and the impact on LCF life. In: Proc. ASME Turbo Expo 2013, San Antonio, June 3-7, 2013.
  • [35] Banaszkiewicz M., Badur J.: Practical methods for online calculation of thermoelastic stresses in steam turbine components. In: Selected Problems of Contemporary Thermomechanics (J. Winczek, Ed.), IntechOpen, 2018, 45–63.
  • [36] Taler J., Duda P.: Solving Direct and Inverse Heat Conduction Problems. Springer, Berlin Heidelberg 2006.
  • [37] Pilarczyk M., Weglowski B, Nord L.O.: A comprehensive thermal and structural transient analysis of a boiler’s steam outlet header by means of a dedicated algorithm and FEM simulation. Energies 13(2020), 1, 111.
  • [38] Shah M.M.: A general correlation for heat transfer during film condensation inside pipes. Int. J. Heat Mass Transf. 22(1979), 547–556.
  • [39] Banaszkiewicz M.: Steam turbines start-ups. Trans. Inst. Fluid-Flow Mach. 126 (2014), 169–198.
  • [40] Rusin A., Banaszkiewicz M.: Control and optimisation of 18K360 turbine start-up. In: Proc. VI Sci.-Tech. Conf. Thermal Plants – Operation, Modernizations, Overhauls, Słok n/Bełchatow, 4-6 June, 2003 (in Polish).
  • [41] Banaszkiewicz M.: Turbine thermal stress controller for retrofits of 370 MW units. In: Proc. VIII Sci.-Tech. Conf. Thermal Plants – Operation, Modernizations, Overhauls, Słok n/Bełchatow, 21-23 May, 2007 (in Polish).
  • [42] Abaqus 6.13 user manual.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61cbd2f7-a0a9-4b61-964b-391774f8f930
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.