PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Development and properties of cementitious self-healing materials based on composite complexing agents

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In addressing the concerns regarding structural performance degradation and diminished service life resulting from concrete crack formation during utilization, this study has developed a cement-based self-healing material. This material utilizes a composite complexing agent composed of tartaric acid derivatives, sodium hexametaphosphate, ethylenediaminetetraacetic acid tetrasodium salt, and vinyl acetate-ethylene redispersible latex powder. The material composition was optimized, and its self-healing performance and mechanism were systematically studied. The findings indicated that when the composite complexing agent content was set at 6% by mass of cement, there was a substantial decrease in the porosity, from 34.2% to 14.2%. In comparison with the control group, specimens with a 6% composite complexing agent exhibited an 8.3 MPa increase in compressive strength and a substantial enhancement in crack sealing, with a rate increase from 73.1% to 99.7%, following 28 days of water curing.
Czasopismo
Rocznik
Strony
17--27
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr., wz.
Twórcy
autor
  • Division of Logistics and Infrastructure, Sichuan International Studies University, Chongqing, China
autor
  • State Key Laboratory of Coal Mine Disaster Prevention and Control, Chongqing, China
  • CCTEG Chongqing Research Institute, Chongqing, China
autor
  • State Key Laboratory of Coal Mine Disaster Prevention and Control, Chongqing, China
  • CCTEG Chongqing Research Institute, Chongqing, China
Bibliografia
  • 1. Mignon, A., Snoeck, D., Dubruel, P., Van Vlierberghe, S. & De Belie, N. (2017). Crack mitigation in concrete: Super-absorbent polymers as key to success? Materials, 10 (3), 237. DOI: 10.3390/ma10030237.
  • 2. Yunovich, M. & Thompson, N. G. (2003). Corrosion of highway bridges: Economic impact and control methodologies. Concr. Int., 25 (1), 52–57.
  • 3. Bettigole, N. (1994). Rebuilding our bridges-why and how. ASTM Standardization News, 22(7).
  • 4. Xincheng, P. (2012). Super-high-strength high performance concrete. CRC Press.
  • 5. Dehwah, H. A. F. (1990). Durability of reinforced concrete beams repaired with various repair materials. King Fahd University of Petroleum and Minerals (Saudi Arabia).
  • 6. Lin, X., Li, W., Castel, A., Kim, T., Huang, Y., Wang, K. (2023). A comprehensive review on self-healing cementitious composites with crystalline admixtures: Design, performance and application. Constr. Build. Mater., 409, 134108. DOI: 10.1016/j.conbuildmat.2023.134108.
  • 7. Gruber, D., Ruiz-Agudo, C., Rao, A., Pasler, S., Cölfen, H. & Sturm, E. V. (2024). Complex coacervates: From polyelectrolyte solutions to multifunctional hydrogels for bioinspired crystallization. Crystals, 14 (11), 959. DOI: 10.3390/cryst14110959.
  • 8. Fernandes, J. F., Futai, M. M., Figueiredo, A. D. D. & Aoki, I. V. (2024). Non-destructive tests for performance evaluation of self-healing concrete by addition of methyl methacrylate--containing microcapsules. Revista IBRACON de Estruturas e Materiais, 17 (2), 1–14. DOI: 10.1590/S1983-41952024000200006.
  • 9. Huang, H. & Ye, G. (2012). Simulation of self-healing by further hydration in cementitious materials. Cem. Concr. Compos., 34 (4), 460–467. DOI: 10.1016/j.cemconcomp.2012.01.003.
  • 10. Rule, J. D., Sottos, N. R. & White, S. R. (2007). Effect of microcapsule size on the performance of self-healing polymers. Polymer, 48 (12), 3520–3529. DOI: 10.1016/j.polymer.2007.04.008.
  • 11. Yang, S., Zhang, S. & Niu, L. (2024). Influence of super-absorbent polymers on self-healing of cement-based materials containing magnesium oxide expansive agents. Ind. Eng. Chem. Res., 63 (34), 15151–15164. DOI: 10.1021/acs.iecr.4c02118.
  • 12. Li, J., Bai, S. & Guan, X. (2024). Development optimization and performance evaluation of mineral capsules based on magnesium oxide expansive agent. J. Build. Eng., 86, 108825. DOI: 10.1016/j.jobe.2024.108825.
  • 13. Liu, Y., Zhou, L., Wan, X., Tang, Y., Liu, Q., Li, W. & Liao, J. (2024). Synthesis and Characterization of a Temperature-Sensitive Microcapsule Gelling Agent for High-Temperature Acid Release. ACS omega, 9 (19), 20849–20858. DOI: 10.1021/acsomega.3c09586.
  • 14. Qian, H., Umar, M., Nasir Ayaz Khan, M., Shi, Y., Manan, A., Raza, A., Li, F., Li, Z. & Chen, G. (2024). A state-of-the-art review on shape memory alloys (sma) in concrete: Mechanical properties, self-healing capabilities, and hybrid composite fabrication. Mater. Today Commun., 40, 109738. DOI: 10.1016/j.mtcomm.2024.109738.
  • 15. Xu, R., Liao, L., Liang, W., Wang, H., Zhou, Q., Liu, W., Chen, M., Fang, B., Wu, D., Jin, H., Li, Y., Zou, S. & Lu, L. (2025). Fast Removing Ligands from Platinum-Based Nano-catalysts by a Square-Wave Potential Strategy. Angew. Chem. Int. Ed. Engl., 5, e202509746. DOI: 10.1002/anie.202509746.
  • 16. Sun, Y., Wang, D., Wang, Z., Han, Z., Zhang, H., Ma, S. & Kong, X. (2024). Preparation and experimental study of corrosion-induced shape-memory fibers for crack repair. Constr. Build. Mater., 457, 139349. DOI: 10.1016/j.conbuildmat.2024.139349.
  • 17. Torkian, P., Baseri, H. & Karevan, M. (2024). Thermomechanical performance of polyester-based composites reinforced with polypropylene microfibers and carbon black nanoparticles. J. Mater. Engin. Perfor., 1-20. DOI: 10.1007/s11665-024-10335-7.
  • 18. Ghazouani, N., Raza, A. & Elhag, A. B. (2025). Synergistic effects of sma fibers and fly ash on the material characterization of recycled aggregate concrete. Materials Letters, 379, 137670. DOI: 10.1016/j.matlet.2024.137670.
  • 19. Qian, C., Ren, L. & Luo, M. (2015). Development of concrete surface defects and cracks repair technology based on microbial-induced mineralization. J. Chin. Ceramic Soc., 43, 619–631.
  • 20. Talaiekhozani, A., Keyvanfar, A., Andalib, R., Samadi, M., Shafaghat, A., Kamyab, H., Abd Majid, M., Zin, R. M., Fulazzaky, M. A. & Lee, C. T. (2014). Application of proteus mirabilis and proteus vulgaris mixture to design self-healing concrete. Desalin. Water Treat., 52 (19–21), 3623–3630. DOI: 10.1080/19443994.2013.854092.
  • 21. Wang, R., Yu, J., Gu, S., He, P., Han, X. & Liu, Q. (2020). Investigation of self-healing capability on surface and internal cracks of cement mortar with ion chelator. Constr. Build. Mater., 236, 117598. DOI: 10.1016/j.conbuildmat.2019.117598.
  • 22. Wang, R., Yu, J., Liu, Q., Kuang, D. & Qiu, H. (2023). Synergistic effect of ion chelating agent and magnesium fluorosilicate on self-repairing ability and microstructure of mortar. Constr. Build. Mater., 383, 131375. DOI: 10.1016/j. conbuildmat.2023.131375.
  • 23. Zeng, C. (2007). Preparation and performance study of cement-based crystalline waterproofing agent (Master, Chongqing University).
  • 24. Ren, Q., Wang, Q., Wu, Z., Liu, J., Xu, H.-Q., Wang, A., Zhang, X., Zhang, Z. & Ding, Y. (2024). Research on the properties of crystalline admixtures: Self-healing healing materials for concrete from multiple perspectives. Constr. Build. Mater., 453, 139047. DOI: 10.1016/j.conbuildmat.2024.139047.
  • 25. Zhang, C. (2022). Study on the self-healing performance of cementitious materials based on ion chelating agents (Ph.D, Harbin Institute of Technology).
  • 26. Xia, X. (2022). Research on water self-healing agents for microcracks in oil well cement stone (Master, SouthWest Petroleum University).
  • 27. Zhang, C., Ye, J., Liu, C., Guan, X., Li, J., Chen, X. & Yuan, J. (2024). Influence of various ion chelators on mechanical, transport and microstructure properties of cement-based materials. Case Stud. Constr. Mater., 21, e03709. DOI: 10.1016/j. cscm.2024.e03709.
  • 28. Peng, Z., Xia, X., Feng, Q., Zheng, Y., Yu, C., Yang, Q. & Liu, X. (2022). Performance of permeable crystalline self-healing agent onmicro-cracks of oil well cement. Arab. J. Sci. Eng., 47 (5), 6073–6084. DOI: 10.1016/j.conbuildmat.2024.139047.
  • 29. Wu, C. J. & Hamada, M. S. (2011). Experiments: Planning, analysis, and optimization. John Wiley & Sons.
  • 30. Li, J., Wen, M., Yang, J., Liu, Y., Jiang, Z. & Chen, J. (2024). Synthesis and analysis of magnetic nanoparticles within foam matrix for foam drainage gas production. Geoenergy Sci. Eng., 238, 212887. DOI: 10.1016/j.geoen.2024.212887.
  • 31. Ye, G., Liu, X., De Schutter, G., Poppe, A. M. & Taerwe, L. (2007). Influence of limestone powder used as filler in scc on hydration and microstructure of cement pastes. Cem. Concr. Compos., 29 (2), 94–102. DOI: 10.1016/j.cemconcomp.2006.09.003.
  • 32. Li, J., Wen, M., Jiang, Z., Xian, L., Liu, J. & Chen, J. (2025). Development and characterization of a surfactant responsive to redox conditions for gas recovery in foam drainage. Sci. Rep., 15 (1). DOI: 10.1038/s41598-024-84256-9.
  • 33. Wang, Y. (2001). Study on the composition, structure, shrinkage, and compensation of ultra-high-strength and high-performance concrete (Master, Chongqing University).
  • 34. Lothenbach, B., Le Saout, G., Haha, M. B., Figi, R. & Wieland, E. (2012). Hydration of a low-alkali cem iii/b–sio2 cement (lac). Cement and Concrete Res., 42 (2), 410–423. DOI: 10.1016/j.cemconres.2011.11.008.
  • 35. El-Diadamony, H., Amer, A. A., Sokkary, T. M. & El-Hoseny, S. (2018). Hydration and characteristics of metakaolin pozzolanic cement pastes. HBRC Journal, 14 (2), 150–158. DOI: 10.1016/j.hbrcj.2015.05.005.
  • 36. Pane, I. & Hansen, W. (2005). Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cement and Concrete Res., 35 (6), 1155–1164. DOI: 10.1016/j.cemconres.2004.10.027.
  • 37. Guan, W., Ji, F., Chen, Q., Yan, P. & Pei, L. (2013). Synthesis and enhanced phosphate recovery property of porous calcium silicate hydrate using polyethyleneglycol as pore-generation agent. Materials, 6 (7), 2846–2861. DOI: 10.3390/ma6072846.
  • 38.Tchekwagep Jean Jacques, K., Fengzhen, Y., Shoude, W., Piqi, Z., Shifeng, H. & Xin, C. (2023). Analysis of the phases and functions of the various compounds of calcium sulfoaluminate cement after exposure to high temperature. J. Mater. Res. Technol., 25, 4154–4170. DOI: 10.1016/j.jmrt.2023.06.215.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61c979a2-b165-47d5-8277-9303994d7517
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.