PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling and structural analysis of skull/cranial implant: beyond mid-line deformities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This computational study explores modelling and finite element study of the implant under Intracranial pressure (ICP) conditions with normal ICP range (7 mm Hg to 15 mm Hg) or increased ICP (>I5 mm Hg). The implant fixation points allow implant behaviour with respect to intracranial pressure conditions. However, increased fixation points lead to variation in deformation and equivalent stress. Finite element analysis is providing a valuable insight to know the deformation and equivalent stress. Methods: The patient CT data (Computed Tomography) is processed in Mimics software to get the mesh model. The implant is modelled by using modified reverse engineering technique with the help of Rhinoceros software. This modelling method is applicable for all types of defects including those beyond the middle line and multiple ones. It is designed with eight fixation points and ten fixation points to fix an implant. Consequently, the mechanical deformation and equivalent stress (von Mises) are calculated in ANSYS 15 software with distinctive material properties such as Titanium alloy (Ti6Al4V), Polymethyl methacrylate (PMMA) and polyether-ether-ketone (PEEK). Results: The deformation and equivalent stress results are obtained through ANSYS 15 software. It is observed that Ti6Al4V material shows low deformation and PEEK material shows less equivalent stress. Among all materials PEEK shows noticeably good result. Conclusions: Hence, a concept was established and more clinically relevant results can be expected with implementation of realistic 3D printed model in the future. This will allow physicians to gain knowledge and decrease surgery time with proper planning.
Rocznik
Strony
125--131
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, NIT Warangal, Telangana, India
autor
  • Department of Mechanical Engineering, NIT Warangal, Telangana, India
  • Department of Metallurgy Engineering, NIT Warangal, Telangana, India
Bibliografia
  • [1] BONDA D.J., MANJILA S., SELMAN W.R., DEAN D., Review, The recent revolution in the design and manufacture of cranial implants: modern advancements and future directions, Neurosurgery, 2015, Vol. 77, Issue 5, 814–824.
  • [2] BRIMIOULLE S., MORAINE J.J., NORRENBERG D., KAHN R.J., Effects of positioning and exercise on intracranial pressure in a neurosurgical intensive care unit, Phys. Ther., 1997, Vol. 77, Issue 12, 1682–1689.
  • [3] CHACÓN-MOYA E., GALLEGOS-HERNÁNDEZ J.F., PIÑACABRALES S., COHN-ZURITA F., GONÉ-FERNÁNDEZ A., Cranial vault reconstruction using computer-designed polyetheretherketone (PEEK) implant: case report, Cir. Cir., 2009, Vol. 77, Issue 6, 437–440.
  • [4] CHEN J.J., LIU W., LI M.Z., WANG C.T., Digital manufacture of titanium prosthesis for cranioplasty, International Journal of Advanced Manufacturing Technology, 2006, Vol. 27, Issue11, 1148–1152.
  • [5] CHRZAN R., URBANIK A., KARBOWSKI K., MOSKAŁA M., POLAK J., PYRICH M., Cranioplasty prosthesis manufacturing based on reverse engineering technology, Med. Sci. Monit, 2012, Vol. 18, Issue 1, MT1-6.
  • [6] EL HALABI F., RODRIGUEZ J.F., REBOLLEDO L., HURTÓS E., DOBLARÉ M., Mechanical characterization and numerical simulation of polyether-ether-ketone (PEEK) cranial implants, J. Mech. Behav. Biomed. Mater, 2011, Vol. 4, Issue 8, 1819–1832.
  • [7] GOPAKUMAR S., RP in medicine: a case study in cranial reconstructive surgery, Rapid Prototyping Journal, 2004, Vol. 10, Issue 3, 207–211.
  • [8] GRIFFIN M.J., The validation of biodynamic models, Clin. Biomech., Avon, Bristol 2001, Vol. 16, Suppl. 1, S81–S92.
  • [9] HIEU L.C., BOHEZ E., VANDER SLOTEN J., PHIEN H.N., VATCHARAPORN E., BINSH P.H., AN P.V., ORIS P., Design for medical rapid prototyping of cranioplasty implants, Rapid Prototyping Journal, 2003, Vol. 9, Issue 3, 175–186.
  • [10] JARDINI A.L., LAROSA M.A., MACIEL FILHO R., ZAVAGLIA C.A., BERNARDES L.F., LAMBERT C.S., CALDERONI D.R., KHARMANDAYAN P., Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing, J. Craniomaxillofac. Surg., 2014, Vol. 42, Issue 8, 1877–1884.
  • [11] LARYSZ D., WOLAŃSKI W., KAWLEWSKA E., MANDERA M., GZIK M., Biomechanical aspects of preoperative planning of skull correction in children with craniosynostosis, Acta Bioeng. Biomech., 2012, Vol. 14, Issue 2, 19–26.
  • [12] LETHAUS B., SAFI Y., TERLAAK-POORT M., KLOSS- -BRANDSTÄTTER A., BANKI F., ROBBENMENKEC., STEINSEIFER U., KESSLER P., Cranioplasty with customized Titanium and PEEK implants in a mechanical stress model, J. Neurotrauma, 2012, Vol. 29, Issue 6, 1077–1083.
  • [13] NAGASAO T., MIYAMOTO J., JIANG H., KANEKO T., Biomechanical analysis of the effect of intracranial pressure on the orbital distances in trigonocephaly, The Cleft Palate–Craniofacial Journal, 2011, Vol. 48, Issue 2, 190–196.
  • [14] O’REILLY E.B., BARNETT S., MADDEN C., WELCH B., MICKEY B., ROZEN S., Computed-tomography modeled polyetheretherketone (PEEK) implants in revision cranioplasty, J. Plast. Reconstr. Aesthet. Surg., 2015, Vol. 68, Issue 3, 329–338.
  • [15] PEEK material properties, “http://www.makeitfrom.com/materialproperties/Polyetheretherketone-PEEK/”.
  • [16] RIDWAN-PRAMANA A., MARCIÁN P., BORÁK L., NARRA N., FOROUZANFAR T., WOLFF J., Structural and mechanical implications of PMMA implant shape and interface geometry in cranioplasty a finite element study, J. Craniomaxillofac. Surg., 2016, Vol. 44, Issue 1, 34–44.
  • [17] ROTARU H., STAN H., FLORIAN I.S., SCHUMACHER R., PARK Y.T., KIM S.G., CHEZAN H., BALC N., BACIUT M., Cranioplasty with custom-made implants: analyzing the cases of 10 patients, J. Oral. Maxillofac. Surg., 2012, Vol. 70, Issue 2, e169-e176.
  • [18] SINGARE S., LIAN Q., PING WANG W., WANG J., LIU Y., LI D., LU B., Rapid prototyping assisted surgery planning and custom implant design, Rapid Prototyping Journal, 2009, Vol. 15, Issue 1, 19–23.
  • [19] SKOWORODKO J., SKALSKI K., CEJMER W., KWIATKOWSKI K., Preoperative planning and post-operative estimation of vertebroplasty using CT/CAD/CAE systems, Acta Bioeng. Biomech., 2008, Vol. 10, Issue 2, 15–22.
  • [20] STEINER L.A., ANDREWS P.J.D., Monitoring the injured brain: ICP and CBF, British Journal of Anaesthesia, 2006, Vol. 97, Issue 1, 26–38.
  • [21] TSOUKNIDAS A., MAROPOULOS S., SAVVAKIS S., MICHAILIDIS N., FEM assisted evaluation of PMMA and Ti6Al4V as materials for cranioplasty resulting mechanical behaviour and the neurocranial protection, Biomed. Mater Eng., 2011, Vol. 21, Issue 3, 139–147.
  • [22] VICECONTI M., OLSEN S., NOLTE L.P., BURTON K., Extracting clinically relevant data from finite element simulations, Clin. Biomech., Avon, Bristol 2005, Vol. 20, Issue 5, 451–454.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61c85f12-690a-49ec-ad4f-bdf3dfe42d62
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.