PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the primary components of the high-speed train on fire heat release rate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A numerical model of the high-speed train carriage fire is established in this study. The influence of ceilings, sidewalls, luggage racks, seats, and floors on the heat release rate (HRR) of the high-speed train is studied by numerical methods. The results indicate that the heat release rate per unit area (HRRPUA) of ceiling and seat material dramatically influences the peak HRR and the time to peak HRR of train carriage fire. When the peak HRRPUA of interior ceiling material 1 decreases from 326 to 110 kW/m2 , the peak HRR of the high-speed train fire decreases from 36.4 to 16.5 MW, with a reduction ratio of 54.7%. When seat materials with low HRRPUA are used, the peak HRR reduction ratio is 44.8%. The HRRPUA of the sidewall, luggage rack, and floor materials has little effect on the peak HRR of the carriage fire. However, the non-combustible luggage rack can delay the time when the HRR reaches its peak.
Rocznik
Strony
37--61
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • University of Science and Technology of China, State Key Laboratory of Fire Science, Hefei, Anhui 230026, China
autor
  • Southwest Jiaotong University, School of Mechanical Engineering, Chengdu 610031, China
autor
  • Southwest Jiaotong University, School of Mechanical Engineering, Chengdu 610031, China
Bibliografia
  • [1] Bi H.Q., Zhou Y.L., Wang H.L., Gou Q.L., Liu X.X.: Characteristics of fire in highspeed train carriages. J. Fire Sci. 38(2020), 1, 75–95. doi: 10.1177/0734904119894527
  • [2] Zhou Y.L., Wang H.L., Bi H.Q., Liu X.X., Gou Q.L.: Heat release rate of highspeed train fire in railway tunnels. Tunn. Undergr. Sp. Tech. 105(2020), 103563.doi: 10.1016/j.tust.2020.103563
  • [3] White N.: Fire development in passenger trains. PhD thesis, Victoria University, Melbourne 2010.
  • [4] Duggan G.J.: Fire hazards, testing, materials and products. In Proc. Conf. on Usage of ISO 5660 Data in UK Railway Standards and Fire Safety Cases, Rubber and Plastics Institute (Rapra), Shrewsbury, 13 March 1997, 1–8.
  • [5] Craig M., Asim T.: Numerical investigations on the propagation of fire in a railway carriage. Energies 13(2020), 19, 4999. doi: 10.3390/en13194999
  • [6] Peacock R.D., Braun E.: Fire Tests of Amtrak Passenger Rail Vehicle Interiors. Final Report. 1978–1983 (Natl. Bur. Stand. Tech. Note 1193). NIST TN 1193, Washington, DC, 1984. doi: 10.6028/Nbs.tn.1193
  • [7] Lslam M.T., Klinger J.L., Reza M.T.: Evaluating combustion characteristics and combustion kinetics of corn stover-derived hydrochars by cone calorimeter. Chem. Eng. J. 452(2023), 2, 139419. doi: 10.1016/j.cej.2022.139419
  • [8] Hirschler M.M.: Use of heat release rate to predict whether individual furnishings would cause self propagating fires. Fire Safety J. 32(1999), 3, 273–296. doi: 10.1016/S0379-7112(98)00037-X
  • [9] Kim J.S., Jeong J.C., Cho S.H., Seo S.I.: Fire resistance evaluation of a train car body made of composite material by large scale tests. Compos. Struct. 83(2008), 3,295–303. doi: 10.1016/j.compstruct.2007.04.022
  • [10] Lee D.H., Park W.H., Jung W.S., Hwang J.H.: Fire test of old type interiors of subway vehicle in ISO 9705 room. J. Korean Soc. Rail. 13(2010), 5, 481–487.
  • [11] Lönnermark A., Ingason H., Li Y.Z., Kumm M.: Fire development in a 1/3 train carriage mock-up. Fire Safety J. 91(2017), 432–440. doi: 10.1016/j.firesaf.2017.03.016
  • [12] Ryu S., Mun S.Y., Hwang C.H.: Effect of the cone heater scale compliant with the ISO 5660 standard on spatial uniformity of radiant heat flux. Fire Sci. Eng. 34(2020), 5, 27–33. doi: 10.7731/KIFSE.ad1befcd
  • [13] Knez N., Kariž M., Knez F., Ayrilmis N., Kuzman M.K.: Effects of selected printing parameters on the fire properties of 3d-printed neat polylactic acid (PLA) andwood/PLA composites. J. Renew. Mater. 9(2021), 11, 1883–1895. doi: 10.32604/jrm.2021.016128
  • [14] Wang Z.Y., Ji J., Tan T.T., Gao Z.H., Zhou Y., Zhou F.: Numerical study on the critical criterion for predicting the plug-holing under lateral mechanical exhaust in tunnel fires: Considering the effect of smoke flow in longitudinal direction. Tunn. Undergr. Sp. Tech. 128(2022), 104666. doi: 10.1016/j.tust.2022.104666
  • [15] Fan, C., Zhang, L., Jiao, S., Yang, Z., Li, M., Liu, X.: Smoke spread characteristics inside a tunnel with natural ventilation under a strong environmental wind. Tunn. Undergr. Sp. Tech. 82(2018), 99–110. doi: 10.1016/j.tust.2018.08.004
  • [16] Liu Y., Shen J., Ma J., Li G., Zhao Z., Ni X., Wang X.: Laser-based measurement and numerical simulation of methane-air jet flame suppression with water mist. Process Saf. Environ. Protect. 148(2021), 1033–1047. doi: 10.1016/j.psep.2021.02.028
  • [17] Zhao J., Xu Z., Ying H., Guan X., Chu K., Tagne S.M.S., Tao H.: Study on smoke spread characteristic in urban interval tunnel fire. Case Stud. Therm. Eng. 30(2022),101755. doi: 10.1016/j.csite.2022.101755
  • [18] Zhang M., Ong J.C., Pang K.M., Bai X.S., Walther J.H.: Large eddy simulation of soot formation and oxidation for different ambient temperatures and oxygen levels. Appl. Energ., 306(2022), 118094. doi: 10.1016/j.apenergy.2021.118094
  • [19] Liu Y.X., Liu C.H., Brasseur G.P., Chao C.Y.H.: Proper orthogonal decomposition of large-eddy simulation data over real urban morphology. Sustain. Cities Soc. 25(2022),104324. doi: 10.1016/j.scs.2022.104324
  • [20] Peterson D.M.: Simulation of a round supersonic combustor using wall-modelled large eddy simulation and partially-stirred reactor models. P. Combust. Inst. (2022).doi: 10.1016/j.proci.2022.08.120
  • [21] Zhou Y.L., Wang H.L., Bi H.Q., Wang J.: Experimental and numerical study of aerodynamic pressures on platform screen doors at the overtaking station of a high-speed subway. Build. Environ. 191(2021), 107582. doi: 10.1016/j.buildenv.2020.107582
  • [22] Bi H.Q., Wang Z.H., Wang H.L., Zhou Y.L.: Aerodynamic phenomena and drag of a maglev train running dynamically in a vacuum tube. Phys. Fluids 34(2022), 9,096111. doi: 10.1063/5.0104819
  • [23] Korib K., Ihaddadene N., Bouakkaz R., Khelili Y.: Numerical simulation of forced convection of nanofluid around a circular cylinder. Arch. Thermodyn. 40(2019), 2,3–16. doi: 10.24425/ather.2019.129539
  • [24] Saeed F.R., Al-Dulaimi M.A.: Numerical investigation for convective heat transfer of nanofluid laminar flow inside a circular pipe by applying various models. Arch. Thermodyn. 42(2021), 1, 71–95. doi: 10.24425/ather.2021.136948
  • [25] Beji T., Merci B.: Numerical simulations of a full-scale cable tray fire using smallscale test data. Fire Mater. 43(2019), 5, 486–496. doi: 10.1002/fam.2687
  • [26] Chen Y.J., Shu C.M., Ho S.P., Kung H.C., Chien S.W., Ho H.H., Hsu W.S.: Analysis of smoke movement in the Hsuehshan tunnel fire. Tunn. Undergr. Sp. Tech.84(2019), 142–150. doi: 10.1016/j.tust.2018.11.007
  • [27] Li Y.Z., Ingason H.: A new methodology of design fires for train carriages based on exponential curve method. Fire Technol. 52(2016), 5, 1449–1464. doi: 10.1007/s10694-015-0464-3
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61c753c9-d33d-414c-9419-93033d9f6594
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.