PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The Impact of Augmented Reality Devices on Operator Performance in Manufacturing Contexts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study explores the impact of augmented reality (AR) on worker performance in manufacturing contexts through an analysis of case studies extant in the literature. Two specific analyses were conducted to assess the impacts of AR technologies on worker performance in terms of objective and subjective metrics, and in terms of their age, experience with the task and experience with the AR device. Regarding objective metrics, the results showed that the task completion time was reduced for some AR devices (projectors, monitors, tablets, smartphones), whereas the use of the head-mounted display (HMD) increased task-completion time; moreover, the error rate was reduced with any AR device compared with traditional methods. Regarding subjective metrics, the analysis underlined that operator perceived a lower workload with the HMD or the monitor compared with traditional methods. The age of operators did not influence performance, while the operators’ experience allowed for the improvement of human performance.
Twórcy
  • Department of Industrial Engineering, University of Salerno, Italy
  • Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
  • University of Salerno, Department of Industrial Engineering, 84084, Fis- ciano, Italy
Bibliografia
  • Alves, J.B. Marques, B., Dias, P., Sousa Santos, B. (2021). Using augmented reality for industrial quality assurance: a shop floor user study. International Journal of Advanced Manufacturing Technology, 115(1–2), 105–116.
  • Aschauer, A., Reisner-Kollmann, I., & Wolfartsberger, J. (2021). Creating an Open-Source Augmented Reality Remote Support Tool for Industry: Challenges and Learnings. Procedia Computer Science, 180, 269–279.
  • Aschenbrenner, D., Rojkov, M., Leutert, F. (2018). Comparing Different Augmented Reality Support Applications for Cooperative Repair of an Industrial Robot. Adjunct Proceedings – 2018 IEEE International Symposium on Mixed and Augmented Reality, ISMARAdjunct, 69–74.
  • Barbieri, L. & Marino, E. (2019). An Augmented Reality Tool to Detect Design Discrepancies: A Comparison Test with Traditional Methods. Lecture Notes in Computer Science.Springer International Publishing.
  • Blattgerste, J. Strenge, B., Renner, P., Pfeiffer, T., Essig, K. (2017). Comparing conventional and augmented reality instructions for manual assembly tasks. ACM International Conference Proceeding Series. Part F1285, 75–82.
  • Bonavolontá, F., Dallet, D., Erra, E., Grassi, A., Popolo, V., Tedesco, A., & Vespoli, S. (2020). Measuring Worker’ s Performance in Augmented Realityassisted Industry 4.0 Procedures. IEEE International Instrumentation and Measurement Technology Conference (I2MTC). 1–6.
  • Bosch, T., Könemann, R., De Cock, H., & Van Rhijn, G. (2017). The effects of projected versus display instructions on productivity, quality and workload in a simulated assembly task. ACM International Conference Proceeding Series. Island of Rhodes, Greece, 412–415.
  • Bosch, T., Van Rhijn, G., Krause, F., Könemann, R., Wilschut, E.S., & de Looze, M. (2020). Spatial augmented reality: A tool for operator guidance and training evaluated in five industrial case studies. ACM International Conference Proceeding Series. 296–302.
  • Bottani, E., Longo, F., Nicoletti, L., Padovano, A., Tancredi, G.P.C., Tebaldi, L., Vetrano, M., & Vignali, G. (2021). Wearable and interactive mixed reality solutions for fault diagnosis and assistance in manufacturing systems: Implementation and testing in an aseptic bottling line. Computers in Industry, 128, 103429.
  • Bottani, E. & Vignali, G. (2019). Augmented reality technology in the manufacturing industry: A review of the last decade. IISE Transactions, 51(3), 284–310.
  • Brice, D., Rafferty, K. and McLoone, S. (2020). AugmenTech: The Usability Evaluation of an AR System for Maintenance in Industry. Lecture Notes in Computer Science, 12243 LNCS, 284–303.
  • Brizzi, F., Peppoloni, L., Graziano, A., Di Stefano, E., Avizzano, C. A., & Ruffaldi, E. (2018). Effects of Augmented Reality on the Performance of Teleoperated Industrial Assembly Tasks in a Robotic Embodiment. IEEE Transactions on Human-Machine Systems, 48(2), 197–206.
  • Bruno, F., Barbieri, L., Marino, E., Muzzupappa, M., D’Oriano, L., & Colacino, B. (2019). An augmented reality tool to detect and annotate design variations in an Industry 4.0 approach. International Journal of Advanced Manufacturing Technology, 105(1–4), 875–887.
  • Büttner, S., Funk, M., Sand, O., & Röcker, C. (2016). Using head-mounted displays and in-situ projection for assistive systems – A comparison. ACM International Conference Proceeding Series, 29-June-20.
  • Büttner, S., Prilla, M., & Röcker, C. (2020). Augmented Reality Training for Industrial Assembly Work – Are Projection-based AR Assistive Systems an Appropriate Tool for Assembly Training? Conference on Human Factors in Computing Systems – Proceedings, 1–12.
  • Danielsson, O., Holm, M., & Syberfeldt, A. (2020). Augmented reality smart glasses in industrial assembly: Current status and future challenges. Journal of Industrial Information Integration, 20, 100175.
  • Di Pasquale, V. De Simone, V., Miranda, S., & Riemma, S. (2022). Smart Operators: How Augmented and Virtual Technologies Are Affecting the Worker’s Performance in Manufacturing Contexts. Journal of Industrial Engineering and Management, 15(2), 233–235.
  • Doshi, A., Smith, R.T., Thomas, B.H., & Bouras, C. (2017). Use of projector based augmented reality to improve manual spot-welding precision and accuracy for automotive manufacturing. International Journal of Advanced Manufacturing Technology, 89(5–8), 1279–1293.
  • Fang, W. & An, Z. (2020). A scalable wearable AR system for manual order picking based on warehouse floorrelated navigation. International Journal of Advanced Manufacturing Technology, 109(7–8), 2023–2037.
  • Fiorentino, M., Radkowski, R., Boccaccio, A., & Uva, A. E. (2016). Magic mirror interface for augmented reality maintenance: An automotive case study. Proceedings of the Workshop on Advanced Visual Interfaces AVI, 07-10-June-2016, 160–167.
  • Funk, M., Shirazi, A.S., Mayer, S., Lischke, L., & Schmidt, A. (2015). Pick from Here-An interactive mobile cart using in-situ projection for order picking. UbiComp 2015 – Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 601–609.
  • Funk, M., Mayer, S., Nistor, M., & Schmidt, A. (2016). Mobile In-Situ Pick-by-Vision: Order Picking Support using a Projector Helmet. PETRA ’16: Proceedings of the 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments, 1–4.
  • Funk, M., Bächler, A., Bächler, L., Kosch, T., Heidenreich, T., & Schmidt, A. (2017). Working with augmented reality? A long-term analysis of in-situ instructions at the assembly workplace. ACM International Conference Proceeding Series, Part F128530, 222–229.
  • Funk, M., Kosch, T. & Schmidt, A. (2016). Interactive worker assistance: Comparing the effects of in-situ projection, head-mounted displays, tablet, and paper instructions. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 934–939.
  • Gattullo, M., Evangelista, A., Uva, A.E., Fiorentino, M., Boccaccio, A., & Manghisi, V. M. (2019). Exploiting Augmented Reality to Enhance Piping and Instrumentation Diagrams for Information Retrieval Tasks in Industry 4.0 Maintenance. Lecture Notes in Computer Science. Springer International Publishing.
  • Havard, V., Baudry, D., Savatier, X., Jeanne, B., Louis, A., & Mazari, B. (2016). Augmented industrial maintenance (AIM): A case study for evaluating and comparing with paper and video media supports. Lecture Notes in Computer Science, 9768, 302–320.
  • Havard, V., Baudry, D., Jeanne, B., Louis, A., & Savatier, X. (2021). A use case study comparing augmented reality (AR) and electronic document-based maintenance instructions considering tasks complexity and operator competency level. Virtual Reality, 25(4), 999–1014.
  • Hietanen, A., Pieters, R., Lanz, M., Latokartano, J., & Kämäräinen, J. K. (2020). AR-based interaction for human-robot collaborative manufacturing. Robotics and Computer-Integrated Manufacturing, 63(2019), 101891.
  • Ikiz, Y.D., Atici-Ulusu, H., Taskapilioglu, O., Gunduz, T. (2019). Effects of Augmented Reality Glasses on the Cognitive Load of Different Age Groups. International conference on Modern Research in Science, Engineering and Technology, 20–24. I
  • lling, J., Klinke, P., Grünefeld, U., Pfingsthorn, M., & Heuten, W. (2020). Time is money! Evaluating Augmented Reality Instructions for Time-Critical Assembly Tasks. ACM International Conference Proceeding Series, 277–287.
  • Konstantinidis, F.K., Kansizoglou, I., Santavas, N., Mouroutsos, S.G., & Gasteratos, A. (2020). Marma: A mobile augmented reality maintenance assistant for fast-track repair procedures in the context of industry 4.0. Machines, 8(4), 1–15.
  • Koumaditis, K., Venckute, S., Jensen, F.S., & Chinello, F. (2019). Immersive Training: Outcomes from Small Scale AR/VR Pilot-Studies. 26th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2019 – Proceedings, 1894–1898.
  • Kubenke, J. and Kunz, A. (2019). Potentials of ITsupported assistive systems: Comparison of two user studies in the manufacturing industry. IFACPapersOnLine, 52(13), 1866–1871.
  • Lagorio, A. et al. (2022). Augmented Reality in Logistics 4.0: implications for the human work. IFACPapersOnLine, 1–6.
  • Lai, Z.H., Tao, W., Leu, M.C., & Yin, Z. (2020). Smart augmented reality instructional system for mechanical assembly towards worker-centered intelligent manufacturing. Journal of Manufacturing Systems, 55, 69–81.
  • Lampen, E., Teuber, J., Gaisbauer, F., Bär, T., Pfeiffer, T., & Wachsmuth, S. (2019). Combining simulation and augmented reality methods for enhanced worker assistance in manual assembly. Procedia CIRP, 81(July), 588–659.
  • Leutert, F. & Schilling, K. (2018). Projector-based Augmented Reality for Telemaintenance Support. IFACPapersOnLine, 51(11), 502–507.
  • Loch, F., Quint, F., & Brishtel, I. (2016). Comparing video and augmented reality assistance in manual assembly. Proceedings – 12th International Conference on Intelligent Environments, IE 2016, 147–150.
  • Longo, F., Nicoletti, L., & Padovano, A. (2017). Smart operators in industry 4.0: A human-centered approach to enhance operators’ capabilities and competencies within the new smart factory context. Computers and Industrial Engineering, 113, 144–159.
  • Marino, E., Barbieri, L., Colacino, B., Fleri, A.K., & Bruno, F. (2021). An Augmented Reality inspection tool to support workers in Industry 4.0 environments. Computers in Industry, 127, 103412.
  • Mättig, B. & Kretschmer, V. (2019). Smart packaging in intralogistics: An evaluation study of humantechnology interaction in applying new collaboration technologies. Proceedings of the Annual Hawaii International Conference on System Sciences, 739–748.
  • Mengoni, M., Ceccacci, S., Generosi, A., & Leopardi, A. (2018). Spatial Augmented Reality: An application for human work in smart manufacturing environment. Procedia Manufacturing, 17, 476–483.
  • Moghaddam, M., Wilson, N.C., Modestino, A.S., Jona, K., & Marsella, S.C. (2021). Exploring augmented reality for worker assistance versus training. Advanced Engineering Informatics, 50, 101410.
  • Mourtzis, D., Zogopoulos, V., & Xanthi, F. (2019). Augmented reality application to support the assembly of highly customized products and to adapt to production re-scheduling. International Journal of Advanced Manufacturing Technology, 105(9), 3899–3910.
  • Murauer, N., Panz, N., & Von Hassel, C. (2018). Comparison of scan mechanisms in augmented reality supported order picking processes. CEUR Workshop Proceedings, 2082, 69–76.
  • Palmarini, R., Erkoyuncu, J.A., Roy, R., & Torabmostaedi, H. (2018). A systematic review of augmented reality applications in maintenance. Robotics and Computer-Integrated Manufacturing, 49, 215–228.
  • Pilati, F., Faccio, M., Gamberi, M., & Regattieri, A. (2020). Learning manual assembly through real-time motion capture for operator training with augmented reality. Procedia Manufacturing, 45, 189–195.
  • Princle, A., Campbell, A.G., Hutka, S., Torrasso, A. (2018). Using an Industry-Ready AR HMD on a Real Maintenance Task: AR Benefits Performance on Certain Task Steps More Than Others. Adjunct Proceedings – 2018 IEEE International Symposium on Mixed and Augmented Reality, ISMAR-Adjunct 2018, 236–241.
  • Ramírez, H., Mendoza, E., Mendoza, M., & González, E. (2015). Application of Augmented Reality in Statistical Process Control, to Increment the Productivity in Manufacture. Procedia Computer Science, 75, 213–220.
  • Re, G. M., Oliver, J., & Bordegoni, M. (2016). Impact of monitor-based augmented reality for on-site industrial manual operations. Cognition, Technology and Work, 18(2), 379–392.
  • Rice, M., Ma, K.T., Tay, H.H., Kaliappan, J., Koh, W.L., Tan, W.P., & Ng, J. (2018). Evaluating an augmented remote assistance platform to support industrial applications. IEEE World Forum on Internet of Things, WF-IoT 2018 – Proceedings, 592–597.
  • Romero, D., Stahre, J., Wuest, T., Noran, O., Bernus, P., Fast-Berglund, Å., & Gorecky, D. (2016). Towards an operator 4.0 typology: A human-centric perspective on the fourth industrial revolution technologies. CIE 2016: 46th International Conferences on Computers and Industrial Engineering, (October), 1–11.
  • Romero, D., Stahre, J., & Taisch, M. (2020). The Operator 4.0: Towards socially sustainable factories of the future. Computers and Industrial Engineering, 139(November 2019).
  • Rupprecht, P., Kueffner-McCauley, H., & Schlund, S. (2020). Information provision utilizing a dynamic projection system in industrial site assembly. Procedia CIRP, 93, 1182–1187.
  • Saeed, N. (2021). Implementing the Augmented Reality as an Industry 4.0 Application to Simplify the Busbar Bending Process during the Covid-19 Pandemic. Transactions of FAMENA, 115–125.
  • Schuster, F., Engelmann, B., Sponholz, U., Schmitt, J., & Engineering, I.D. (2021). Human acceptance evaluation of AR-assisted assembly scenarios. Journal of Manufacturing Systems, (April 2020).
  • Sharma, A., Mehtab, R., Mohan, S., & Mohd Shah, M.K. (2022). Augmented reality – an important aspect of Industry 4.0. Industrial Robot, 49(3), 428–441.
  • Syberfeldt, A., Danielsson, O., Holm, M., & Wang, L. (2015). Visual Assembling Guidance Using Augmented Reality. Procedia Manufacturing, 1, 98–109.
  • Wang, C.H., Tsai, N.H., Lu, J.M., & Wang, M.J.J. (2019). Usability evaluation of an instructional application based on Google Glass for mobile phone disassembly tasks. Applied Ergonomics, 77, 58–69.
  • Werrlich, S., Lorber, C., Nguyen, P.A., Yanez, C.E.F., & Notni, G. (2018). Assembly training: Comparing the effects of head-mounted displays and face-to-face training. Lecture Notes in Computer Science. Springer International Publishing.
  • Werrlich, S., Nguyen, P.A., & Notni, G. (2018). Evaluating the training transfer of Head-Mounted Display based training for assembly tasks. ACM International Conference Proceeding Series, 297–302.
  • Wilschut, E.S., Murphy, M.S. & Bosch, T. (2019). Evaluating learning approaches for product assembly: using chunking of instructions, spatial augmented reality and display based work instructions. Petra’19, 376– 381.
  • Yang, Y., Karreman, J. & De Jong, M. (2020). Comparing the Effects of Paper and Mobile Augmented Reality Instructions to Guide Assembly Tasks. IEEE International Professional Communication Conference, 96–104.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61c52356-9c42-4b26-95bd-721dc379aeb9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.