PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and statistical determination of thermal characteristics of the special design minichannel heat exchanger

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of experimental investigation and the new statistical method for the determination of preliminary thermal characteristics of a prototype compact minichannel heat exchanger with laminar flows and significant heat transfer in the manifolds. The exemplary heat exchanger consists of 9 straight, parallel, square-shaped channels and two rectangular-shaped manifolds milled on both sides of the single aluminium plate. The design of the investigated heat exchanger is quite particular, as the heat transfer area of both pairs of manifolds provides almost 1/3 of the total heat transfer area. In the new statistical method presented in this paper, the manifolds’ and channels’ heat flows are considered separately. The heat exchanger’s thermal characteristic was obtained statistically on the basis of the experimental results and is presented in the form of the overall heat transfer rate. The developed thermal characteristic model accounts for two effects, among many others, which may affect heat transfer in the exchanger, i.e. the heat loss to the ambient and the significant heat transfer in the manifolds. It is proved that the heat transfer to the surroundings was negligible due to the suitable thermal insulation. In order to demonstrate that the heat transfer in the manifolds is significant, two calculation variants are presented. The relative differences (residuals) between the experimental and statistically corrected heat transfer rates and the coefficient of determination R2 are determined in both variants. In the first variant the heat transfer in the manifold pairs is neglected and in the second model it is included. It was observed that the lack of consideration of the heat transfer in the manifold pairs provides drastic dispersion between the experimental and statistical results. In turn, in the second model, where the manifolds are accounted for, a significant enhancement in the consistency of the results is noticed. The relative residuals are much lower, and the corresponding coefficient R2 is improved from R2 = 0.8827 in the first variant to R2 = 0.9335 in the second one, respectively.
Rocznik
Strony
63--71
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
  • Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Institute of Fluid Flow Machinery, Polish Academy of Science, ul. Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Rosa, P., Karayiannis, T.G., & Collins, M.W. (2009). Singlephase heat transfer in microchannels: The importance of scaling effects. Applied Thermal Engineering, 29(17‒18), 3447‒3468. doi: 10.1016/j.applthermaleng.2009.05.015
  • [2] Morini, G.L. (2004). Single-phase convective heat transfer in microchannels: A review of experimental results. International Journal of Thermal Sciences, 43(7), 631‒651. doi: 10.1016/j.ijthermalsci.2004.01.003
  • [3] Hasan, M.I., Rageb, A.A., Yaghoubi, M., & Homayoni, H. (2009). Influence of channel geometry on the performance of a counter flow microchannel heat exchanger. International Journal of Thermal Sciences, 48(8), 1607‒1618. doi: 10.1016/j.ijthermalsci.2009.01.004
  • [4] Steinke, M.E., & Kandlikar, S.G. (2005). Single-phase liquid heat transfer in microchannels. In Proceedings of ICMM2005, ASME 3rd International Conference on Nanochannels, Microchannels, and Minichannels, 41855, (pp. 667‒678), 13−15 June, Toronto, Ontario, Canada. doi:10.1115/ICMM2005-75114
  • [5] Dixit, T., & Ghosh, I. (2015). Review of micro-and mini-channel heat sinks and heat exchangers for single phase fluids. Renewable and Sustainable Energy Reviews, 41, 1298‒1311. doi: 10.1016/j.rser.2014.09.024
  • [6] Foli, K., Okabe, T., Olhofer, M., Jin, Y., & Sendhoff, B. (2006). Optimization of micro heat exchanger: CFD, analytical approach and multi-objective evolutionary algorithms. International Journal of Heat and Mass Transfer, 49(5‒6), 1090‒1099. doi:10.1016/j.ijheatmasstransfer.2005.08.032
  • [7] Kee, R.J., Almand, B.B., Blasi, J.M., Rosen, B.L., Hartmann, M., Sullivan, N.P., & Martin, J.L. (2011). The design, fabrication, and evaluation of a ceramic counter-flow microchannel heat exchanger. Applied Thermal Engineering, 31(11‒12), 2004‒2012. doi: 10.1016/j.applthermaleng.2011.03.009
  • [8] García-Hernando, N., Acosta-Iborra, A., Ruiz-Rivas, U., & Izquierdo, M. (2009). Experimental investigation of fluid flow and heat transfer in a single-phase liquid flow micro-heat exchanger. International Journal of Heat and Mass Transfer, 52(23‒24), 5433‒5446. doi: 10.1016/j.ijheatmasstransfer.2009.06.034
  • [9] Cao, H., Chen, G., & Yuan, Q. (2009). Testing and design of a microchannel heat exchanger with multiple plates. Industrial & Engineering Chemistry Research, 48(9), 4535‒4541. doi:10.1021/ie801419r
  • [10] Koyama, K., & Asako, Y. (2010). Experimental investigation on heat transfer characteristics of a gas-to-gas counterflow microchannel heat exchanger. Experimental Heat Transfer, 23(2),130−143. doi: 10.1080/08916150903402799
  • [11] Alm, B., Imke, U., Knitter, R., Schygulla, U., & Zimmermann, S. (2008). Testing and simulation of ceramic micro heat exchangers. Chemical Engineering Journal, 135, S179−S184. doi: 10.1016/j.cej.2007.07.005
  • [12] Al-Nimr, M.A., Maqableh, M., Khadrawi, A.F., & Ammourah, S.A. (2009). Fully developed thermal behaviors for parallel flow microchannel heat exchanger. International Communications in Heat and Mass Transfer, 36(4), 385−390. doi: 10.1016/j.icheatmasstransfer.2009.01.010
  • [13] Wajs, J., Mikielewicz, D., & Fornalik-Wajs, E. (2016). Thermal performance of a prototype plate heat exchanger with minichannels under boiling conditions. In Proc. of 7th European ThermalSciences Conference (Eurotherm2016). Journal of Physics: Conference Series, 745(3), 032063. doi: 10.1088/1742-6596/745/3/032063
  • [14] Mikielewicz, D., & Wajs, J. (2017). Possibilities of heat transfer augmentation in heat exchangers with minichannels for marine applications. Polish Maritime Research Special Issue, 24,133−140. doi: 10.1515/pomr-2017-0031
  • [15] Yang, Y., Brandner, J.J., & Morini, G.L. (2012). Hydraulic and thermal design of a gas microchannel heat exchanger. In Journal of Physics: Conference Series, 362(1), 012023. doi: 10.1088/1742-6596/362/1/012023
  • [16] Dang, T., Teng, J.T., & Chu, J C. (2010). A study on the simulation and experiment of a microchannel counter-flow heat exchanger. Applied Thermal Engineering, 30(14−15), 2163−2172.doi: 10.1016/j.applthermaleng.2010.05.029
  • [17] Tychanicz-Kwiecień, M. (2022). The application of the Wilson plot method to convective heat transfer-discussion. Advances in Mechanical and Materials Engineering, 39(94), 77−89. doi:10.7862/rm.2022.6
  • [18] Fernando, P., Palm, B., Ameel, T., Lundqvist, P., & Granryd, E. (2008). A minichannel aluminium tube heat exchanger– Part I: Evaluation of single-phase heat transfer coefficients by the Wilson plot method. International Journal of Refrigeration, 31(4),669−680. doi: 10.1016/j.ijrefrig.2008.02.011
  • [19] Rybiński, W., & Mikielewicz, J. (2018). Statistical method for the determination of the minichannel heat exchanger’s thermal characteristics. Energy, 158, 139−147. doi: 10.1016/j.energy.2018.05.175
  • [20] Tychanicz-Kwiecień, M., Smusz, R., & Gil, P. (2019). The design of experimental set-up for testing of heat exchangers. In Contemporary issues of heat and mass transfer, 2 (pp. 901−918). Publishing House of the Koszalin University of Technology.
  • [21] Mobedi, M., & Gediz Illis G. (2023). Fundamentals of Heat Transfer: An Interdisciplinary Analytical Approach. Springer Nature Singapore. doi:10.1007/978-981-99-0957-5
  • [22] Lee, P.S., & Garimella, S.V. (2006). Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios. International Journal of Heat and Mass Transfer, 49,3060−3067. doi: 10.1016/j.ijheatmasstransfer.2006.02.011
  • [23] Kandlikar, S.G., Garimella, S., Li, D., Colin, S., & King, M.R. (2006). Heat transfer and fluid flow in minichannels and microchannels. Elsevier Ltd., Oxford.
  • [24] Shah, R.K., & London, A.L. (1978). Laminar flow forced convection in ducts. Academic Press, New York.
  • [25] Rybiński, W., & Mikielewicz, J. (2014). Analytical solutions of heat transfer for laminar flow in rectangular channels. Archives of Thermodynamics, 35(4), 29−42. doi: 10.2478/aoter-2014-0031
  • [26] Morini, G.L., Lorenzini, M., Salvigni, S., & Celata, G.P. (2010). Experimental analysis of microconvective heat transfer in the laminar and transitional regions. Experimental Heat Transfer, 23, 73−93. doi: 10.1080/08916150903402757
  • [27] Wilk, J. (2013). Investigation of heat transfer in short minichannels. Publishing House of the Rzeszów University of Technology.
  • [28] Brandt, S. (2014). Data analysis. Statistical and computational methods for scientists and engineers (4th Edn.). Springer.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61c46189-27f8-4559-a859-29dd9819b207
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.