Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The all-direction vibration and noise control by metastructures have received high demands in the vibroacoustic community in the recent past to solve multiple vibration and noise-related engineering problems. This class of elastic metamaterial has grasped a strong root in this community due to its versatile wave manipulation characteristics, including frequency bandgap property. Inspired by the idea of metamaterial and computational mechanics in breakthrough research for vibration and noise control technology, the present study proposes a novel 3D phononic metastructure that is capable of generating low-frequency extremely wide three-dimensional complete bandgap with relative bandwidth Δω/ωc=171.5%. The study is based on analytical modeling, numerical finite element analysis and experiment on 3D printed prototype. The proposed monolithic metastructure is comprised of elastic beams connected orthogonally with rigid spherical masses. The axial compression mode of a complete unit cell structure and the flexural stiffness of beams are manipulated to generate low-frequency extremely wide bandgap. By the principle of modal masses participation/mode separation, the opening and closing of the bandgap is analyzed. The results are corroborated by two different numerical FE solutions on the frequency response spectrum, and the models are validated by performing a vibration test on 3D printed prototype. The wave attenuation over ultrawide frequency range is demonstrated through numerical and experimental approaches, and excellent agreement is reported. The proposed monolithic metastructure design may find potential applications in industrial and infrastructural devices where noise and vibration control over ultrawide frequency range are desirable in all directions.
Czasopismo
Rocznik
Tom
Strony
197--207
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
autor
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, People’s Republic of China
autor
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, People’s Republic of China
Bibliografia
- [1] Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett. 2000;85(18):3966–9. https:// doi. org/ 10. 1103/ PhysR evLett. 85. 3966.
- [2] Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett. 2000;84(18):4184–7. https:// doi. org/ 10. 1103/ PhysR evLett. 84. 4184.
- [3] Hussein MI, Leamy MJ, Ruzzene M. Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl Mech Rev. 2014;66(4):040802. https:// doi. org/ 10.1115/1. 40269 11.
- [4] Wang Y-F, Wang Y-Z, Wu B, Chen W, Wang Y-S. Tunable and active phononic crystals and metamaterials. Appl Mech Rev. 2020;72(4):040801.
- [5] Huang HH, Sun CT, Huang GL. On the negative effective mass density in acoustic metamaterials. Int J Eng Sci. 2009;47(4):610–7. https:// doi. org/ 10. 1016/j. ijeng sci. 2008. 12. 007.
- [6] Yu X, Zhou J, Liang H, Jiang Z, Wu L. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review. Prog Mater Sci. 2018;94:114–73. https:// doi. org/ 10.1016/j. pmats ci. 2017. 12. 003.
- [7] Yu K, Fang NX, Huang G, Wang Q. Magnetoactive acoustic metamaterials. Adv Mater. 2018;30(21):1706348. https:// doi. org/ 10. 1002/ adma. 20170 6348.
- [8] Nassar H, Yousefzadeh B, Fleury R, Ruzzene M, Alù A, Daraio C, Norris AN, Huang G, Haberman MR. Nonreciprocity in acoustic and elastic materials. Nat Rev Mater. 2020. https:// doi. org/ 10. 1038/ s41578- 020- 0206-0.
- [9] Zhang Q, Chen Y, Zhang K, Hu G. Programmable elastic valley Hall insulator with tunable interface propagation routes. Extreme Mech Lett. 2019;28:76–80. https:// doi. org/ 10. 1016/j. eml. 2019. 03. 002.
- [10] Muhammad, Zhou WJ, Lim CW. Topological edge modeling and localization of protected interface modes in 1D phononiccrystals for longitudinal and bending elastic waves. Int J Mech Sci. 2019;159:359–72. https:// doi. org/ 10. 1016/j. ijmec sci. 2019. 05. 020.
- [11] Muhammad, Lim CW. Analytical modeling and computational analysis on topological properties of 1-D phononic crystals in elastic media. J Mech Mater Struct. 2020;15(1):15–35. https://doi. org/ 10. 2140/ jomms. 2020. 15. 15.
- [12] Lu Y, Yang Y, Guest JK, Srivastava A. 3-D phononic crystals with ultra-wide band gaps. Sci Rep. 2017;7:43407. https:// doi. org/ 10. 1038/ srep4 3407.
- [13] Li X, Ning S, Liu Z, Yan Z, Luo C, Zhuang Z. Designing phononic crystal with anticipated band gap through a deep learning based data-driven method. Comput Methods Appl Mech Eng. 2020;361:112737. https:// doi. org/ 10. 1016/j. cma. 2019. 112737.
- [14] Kollmann HT, Abueidda DW, Koric S, Guleryuz E, Sobh NA. Deep learning for topology optimization of 2D metamaterials. Mater Design. 2020;196:109098. https:// doi. org/ 10. 1016/j. matdes. 2020. 109098.
- [15] Bilal OR, Hussein MI. Trampoline metamaterial: Local resonance enhancement by springboards. Appl Phys Lett. 2013;103(11):111901. https:// doi. org/ 10. 1063/1. 48207 96.
- [16] Muhammad, Lim CW. Dissipative multiresonant pillared and trampoline metamaterials with amplified local resonance bandgaps and broadband vibration attenuation. J Vib Acoust. 2020;142(6):061012. https:// doi. org/ 10. 1115/1. 40473 58.
- [17] Orta AH, Yilmaz C. Inertial amplification induced phononic band gaps generated by a compliant axial to rotary motion conversion mechanism. J Sound Vib. 2019;439:329–43. https:// doi. org/ 10. 1016/j. jsv. 2018. 10. 014.
- [18] Zhou WJ, Muhammad, Chen WQ, Chen ZY, Lim CW. Actively controllable flexural wave band gaps in beam-type acoustic metamaterials with shunted piezoelectric patches. Eur J Mech a-Solid. 2019;77:103807. https:// doi. org/ 10. 1016/j. eurom echsol. 2019. 103807.
- [19] Muhammad, Lim CW, Li J, Zhao Z. Lightweight architected lattice phononic crystals with broadband and multiband vibration mitigation characteristics. Extreme Mech Lett. 2020;41:100994. https:// doi. org/ 10. 1016/j. eml. 2020. 100994.
- [20] D’Alessandro L, Ardito R, Braghin F, Corigliano A. Low frequency 3D ultra-wide vibration attenuation via elastic metamaterial. Sci Rep. 2019;9(1):8039. https:// doi. org/ 10. 1038/ s41598- 019- 44507-6.
- [21] D’Alessandro L, Krushynska AO, Ardito R, Pugno NM, Corigliano A. A design strategy to match the band gap of periodic and aperiodic metamaterials. Sci Rep. 2020;10(1):16403. https:// doi. org/ 10. 1038/ s41598- 020- 73299-3.
- [22] Muhammad, Lim CW (2021) Phononic metastructures with ultrawide low frequency three-dimensional bandgaps as broadband low frequency filter. Sci Rep (under review).
- [23] Banerjee A, Das R, Calius EP. Waves in structured mediums or metamaterials: a review. Arch Comput Methods Eng. 2018;26(4):1029–58. https:// doi. org/ 10. 1007/ s11831- 018- 9268-1.
- [24] Muhammad, Lim CW, Reddy JN. Built-up structural steel sections as seismic metamaterials for surface wave attenuation with low frequency wide bandgap in layered soil medium. Eng Struct. 2019;188:440–51. https:// doi. org/ 10. 1016/j. engst ruct. 2019. 03. 046.
- [25] Andrianov IV, Awrejcewicz J. Continuous models for 2D discrete media valid for higher-frequency domain. Comput Struct. 2008;86(1):140–4. https:// doi. org/ 10. 1016/j. comps truc. 2007. 05. 013.
- [26] Andrianov IV, Awrejcewicz J, Weichert D. Improved continuous models for discrete media. Math Probl Eng. 2010;2010:986242. https:// doi. org/ 10. 1155/ 2010/ 986242.
- [27] Kennedy J, Flanagan L, Dowling L, Bennett GJ, Rice H, Trimble D. The influence of additive manufacturing processes on the performance of a periodic acoustic metamaterial. Int J Polym Sci. 2019;2019:7029143. https:// doi. org/ 10. 1155/ 2019/ 70291 43.
- [28] Rice HJ, Kennedy J, Göransson P, Dowling L, Trimble D. Design of a Kelvin cell acoustic metamaterial. J Sound Vib. 2020;472:115167. https:// doi. org/ 10. 1016/j. jsv. 2019. 115167.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61bad087-2343-4358-8702-bc3b88c62bcf