PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrostatic cyclic extrusion compression (HCEC) process; a new CEC counterpart for processing long ultrafine-grained metals

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydrostatic cyclic extrusion–compression as a novel severe plastic deformation method in the processing of the rods is introduced and used for refining ultrafine-grained commercial pure aluminum. HCEC is solving the limitation of the conventional CEC in producing long-length samples by utilizing pressurized hydraulic fluid and eliminating the frictional effects. An increase in the length of the processable sample, a reduction in the processing loads, an intensification in the hydrostatic stress, and improvement in the strain distribution are the novel achievements of the HCEC. The capability of HCEC in grain refinement of the commercial pure aluminum was investigated by transmission electron microscopy analysis. The processed samples showed the grain sizes of 780 nm and 400 nm after the first and second passes of the HCEC, respectively. Furthermore, tensile and shear punch tests were utilized for investigation of the mechanical properties of the unprocessed and HCEC processed rods. An increase in the tensile and shear yield and ultimate strengths after the process confirmed the decreases in grain sizes. The tensile yield and ultimate strengths of the rod after the second cycle of the process reached 170 and 196 MPa, respectively. The same increasing trend as strength was shown in the microhardness after the HCEC. FEM analysis depicted the homogenous distribution of strain along the length of the sample. Also, the independency of the processing force to the length of the sample was shown by the FEM. The implementation of this novel technique looks very interesting for the industrial utilization of SPD techniques, especially in automotive and aerospace industries, which suffer from the limited size of the processing specimens.
Rocznik
Strony
143--155
Opis fizyczny
Bibliogr. 56 poz., rys., wykr.
Twórcy
  • School of Mechanical Engineering, College of Engineering, University of Tehran, 11155‑4563 Tehran, Iran
  • School of Mechanical Engineering, College of Engineering, University of Tehran, 11155‑4563 Tehran, Iran
Bibliografia
  • [1] Kleiner M, Chatti S, Klaus A. Metal forming techniques for lightweight construction. J Mater Process Technol. 2006;177(1–3):2–7.
  • [2] Valiev R. Nanostructuring of metals by severe plastic deformation for advanced properties. Nat Mater. 2004;3(8):511.
  • [3] Alihosseini H, Faraji G, Dizaji A, Dehghani K. Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE). Mater Charact. 2012;68:14–211.
  • [4] Richert MW. Features of cyclic extrusion compression: method, structure & materials properties. Solid State Phenom. 2006;114:19–28.
  • [5] Pachla W, Kulczyk M, Przybysz S, Skiba J, Wojciechowski K, Przybysz M, Topolski K, Sobolewski A, Charkiewicz M. Effect of severe plastic deformation realized by hydrostatic extrusion and rotary swaging on the properties of CP Ti grade 2. J Mater Process Technol. 2015;221:255–68.
  • [6] Lin J, Wang Q, Peng L, Roven HJ. Microstructure and high tensile ductility of ZK60 magnesium alloy processed by cyclic extrusion and compression. J Alloy Compd. 2009;476(1–2):441–5.
  • [7] Richert M, McQueen H, Richert J. Micrbband formation in cyclic extrusion compression of aluminum. Can Metall Q. 1998;37(5):449–57.
  • [8] Faraji G, Kim HS, Kashi HT. Severe plastic deformation: methods, processing and properties. Amsterdam: Elsevier; 2018.
  • [9] Chen Y, Wang Q, Lin J, Zhang L, Zhai C. Fabrication of bulk UFG magnesium alloys by cyclic extrusion compression. J Mater Sci. 2007;42(17):7601–3.
  • [10] Pardis N, Talebanpour B, Ebrahimi R, Zomorodian S. Cyclic expansion-extrusion (CEE): a modified counterpart of cyclic extrusion-compression (CEC). Mater Sci Eng A. 2011;528(25–26):7537–40.
  • [11] Richert M, Liu Q, Hansen N. Microstructural evolution over a large strain range in aluminium deformed by cyclic-extrusion–compression. Mater Sci Eng A. 1999;260(1–2):275–83.
  • [12] Chen Y, Wang Q, Roven H, Karlsen M, Yu Y, Liu M, Hjelen J. Microstructure evolution in magnesium alloy AZ31 during cyclic extrusion compression. J Alloy Compd. 2008;462(1–2):192–200.
  • [13] Wang Q, Chen Y, Liu M, Lin J, Roven HJ. Microstructure evolution of AZ series magnesium alloys during cyclic extrusion compression. Mater Sci Eng A. 2010;527(9):2265–73.
  • [14] Savarabadi MM, Faraji G, Eftekhari M. Microstructure and mechanical properties of the commercially pure copper tube after processing by hydrostatic tube cyclic expansion extrusion (HTCEE). In: Metals and materials international. 2019. p. 1–15.
  • [15] Amani S, Faraji G, Mehrabadi HK, Abrinia K, Ghanbari H. A combined method for producing high strength and ductility magnesium microtubes for biodegradable vascular stents application. J Alloy Compd. 2017;723:467–76.
  • [16] Bohlen J, Yi S, Swiostek J, Letzig D, Brokmeier H, Kainer K. Microstructure and texture development during hydrostatic extrusion of magnesium alloy AZ31. Scr Mater. 2005;53(2):259–64.
  • [17] Manafi B, Shatermashhadi V, Abrinia K, Faraji G, Sanei M. Development of a novel bulk plastic deformation method: hydrostatic backward extrusion. Int J Adv Manuf Technol. 2016;82(9–12):1823–30.
  • [18] Jamali S, Faraji G, Abrinia K. Hydrostatic radial forward tube extrusion as a new plastic deformation method for producing seamless tubes. Int J Adv Manuf Technol. 2017;88(1–4):291–301.
  • [19] Samadpour F, Faraji G, Babaie P, Bewsher SR, Mohammadpour M. Hydrostatic cyclic expansion extrusion (HCEE) as a novel severe plastic deformation process for producing long nanostructured metals. Mater Sci Eng A. 2018;718:412–7.
  • [20] Faraji G, Kim HS, Torabzadeh Kashi H. Severe plastic deformation: methods, processing and properties. Elsevier, 2018.
  • [21] Peters M, Kumpfert J, Ward CH, Leyens C. Titanium alloys for aerospace applications. Adv Eng Mater. 2003;5(6):419–27.
  • [22] Long R, Boettcher E, Crawford D. Current and future uses of aluminum in the automotive industry. JOM. 2017;69(12):2635–9.
  • [23] Monetta T, Acquesta A, Maresca V, Signore R, Bellucci F, Di Petta P, Lo Masti M. Characterization of aluminum alloys environmentally friendly surface treatments for aircraft and aerospace industry. Surf Interface Anal. 2013;45(10):1522–9.
  • [24] Ito Y, Edalati K, Horita Z. High-pressure torsion of aluminum with ultrahigh purity (99.9999%) and occurrence of inverse Hall–Petch relationship. Mater Sci Eng A. 2017;679:428–34.
  • [25] Kim K, Yang D-Y, Yoon JW. Microstructural evolution and its effect on mechanical properties of commercially pure aluminum deformed by ECAE (equal channel angular extrusion) via routes A and C. Mater Sci Eng A. 2010;527(29–30):7927–30.
  • [26] Soliman MS, El-Danaf EA, Almajid AA. Effect of equal-channel angular pressing process on properties of 1050 Al alloy. Mater Manuf Process. 2012;27(7):746–50.
  • [27] Lewandowska M. Mechanism of grain refinement in aluminium in the process of hydrostatic extrusion. Solid State Phenom. 2006;114:109–16.
  • [28] Todaka Y, Umemoto M, Yamazaki A, Sasaki J, Tsuchiya K. Influence of high-pressure torsion straining conditions on microstructure evolution in commercial purity aluminum. Mater Trans. 2008;49:7–14.
  • [29] Rahmatabadi D, Hashemi R. Experimental evaluation of forming limit diagram and mechanical properties of nano/ultra-fine grained aluminum strips fabricated by accumulative roll bonding. Int J Mater Res. 2017;108(12):1036–44.
  • [30] Alimirzaloo V, Modanloo V. Investigation of the forming force in torsion extrusion process of aluminum alloy 1050. Int J Eng. 2017;30(6):920–5.
  • [31] Lewandowska M, Kurzydlowski KJ. Recent development in grain refinement by hydrostatic extrusion. J Mater Sci. 2008;43(23–24):7299.
  • [32] Rahimi F, Eivani A. A new severe plastic deformation technique based on pure shear. Mater Sci Eng A. 2015;626:423–31.
  • [33] Alihosseini H, Zaeem MA, Dehghani K, Shivaee HA. Producing ultrafine-grained aluminum rods by cyclic forward-backward extrusion: study the microstructures and mechanical properties. Mater Lett. 2012;74:147–50.
  • [34] Akbaripanah F, Fereshteh-Saniee F, Mahmudi R, Kim H. Microstructural homogeneity, texture, tensile and shear behavior of AM60 magnesium alloy produced by extrusion and equal channel angular pressing. Mater Des. 2013;43:31–9.
  • [35] Samadpour F, Siahsarani A, Faraji G, Bahrami M. Experimental and finite element analyses of the hydrostatic cyclic expansion extrusion (HCEE) process with back-pressure. J Ultrafine Grained Nanostruct Mater. 2019;52(1):25–31.
  • [36] Richert M, Stüwe H, Richert J, Pippan R, Motz C. Characteristic features of microstructure of ALMg5 deformed to large plastic strains. Mater Sci Eng A. 2001;301(2):237–43.
  • [37] Samadpour F, Faraji G, Siahsarani A. Processing of AM60 magnesium alloy by hydrostatic cyclic expansion extrusion at elevated temperature as a new SPD method. Int J Miner Metall Mater. 2020;27(5):669–77.
  • [38] Savarabadi MM, Faraji G, Zalnezhad E. Hydrostatic tube cyclic expansion extrusion (HTCEE) as a new severe plastic deformation method for producing long nanostructured tubes. J Alloy Compd. 2019;785:163–8.
  • [39] Amani S, Faraji G, Abrinia K. Microstructure and hardness inhomogeneity of fine-grained AM60 magnesium alloy subjected to cyclic expansion extrusion (CEE). J Manuf Process. 2017;28:197–208.
  • [40] Babaei A, Mashhadi M. Tubular pure copper grain refining by tube cyclic extrusion–compression (TCEC) as a severe plastic deformation technique. Prog Nat Sci Mater Int. 2014;24(6):623–30.
  • [41] Jiang J, Ding Y, Zuo F, Shan A. Mechanical properties and microstructures of ultrafine-grained pure aluminum by asymmetric rolling. Scr Mater. 2009;60(10):905–8.
  • [42] Sun P, Kao P, Chang C. High angle boundary formation by grain subdivision in equal channel angular extrusion. Scr Mater. 2004;51(6):565–70.
  • [43] Sun P, Yu C, Kao P, Chang C. Microstructural characteristics of ultrafine-grained aluminum produced by equal channel angular extrusion. Scr Mater. 2002;47(6):377–81.
  • [44] Maizza G, Pero R, Richetta M, Montanari R. Continuous dynamic recrystallization (CDRX) model for aluminum alloys. J Mater Sci. 2018;53(6):4563–73.
  • [45] Kapoor R, Reddy GB, Sarkar A. Discontinuous dynamic recrystallization in α-Zr. Mater Sci Eng A. 2018;718:104–10.
  • [46] Lee J-C, Seok H-K, Suh J-Y. Microstructural evolutions of the Al strip prepared by cold rolling and continuous equal channel angular pressing. Acta Mater. 2002;50(16):4005–199.
  • [47] Kwon Y, Shigematsu I, Saito N. Mechanical properties of finegrained aluminum alloy produced by friction stir process. Scr Mater. 2003;49(8):785–9.
  • [48] Hansen N, Huang X, Ueji R, Tsuji N. Structure and strength after large strain deformation. Mater Sci Eng A. 2004;387:191–4.
  • [49] Mohebbi M, Akbarzadeh A. Accumulative spin-bonding (ASB) as a novel SPD process for fabrication of nanostructured tubes. Mater Sci Eng A. 2010;528(1):180–8.
  • [50] Guduru R, Darling K, Kishore R, Scattergood R, Koch C, Murty K. Evaluation of mechanical properties using shear–punch testing. Mater Sci Eng A. 2005;395(1–2):307–14.
  • [51] Azimi A, Tutunchilar S, Faraji G, Givi MB. Mechanical properties and microstructural evolution during multi-pass ECAR of Al 1100–O alloy. Mater Des. 2012;42:388–94.
  • [52] Faraji G, Kim H. Review of principles and methods of severe plastic deformation for producing ultrafine-grained tubes. Mater Sci Technol. 2017;33(8):905–23.
  • [53] Krawczynska AT, Gierlotka S, Suchecki P, Setman D, Adamczyk-Cieslak B, Lewandowska M, Zehetbauer M. Recrystallization and grain growth of a nano/ultrafine structured austenitic stainless steel during annealing under high hydrostatic pressure. J Mater Sci. 2018;53(16):11823–36.
  • [54] Reihanian M, Ebrahimi R, Tsuji N, Moshksar M. Analysis of the mechanical properties and deformation behavior of nanostructured commercially pure Al processed by equal channel angular pressing (ECAP). Mater Sci Eng A. 2008;473(1–2):189–94.
  • [55] Surendarnath S, Sankaranarayanasamy K, Ravisankar B. Workability study on 99.04% pure aluminum processed by ECAP. Mater Manuf Process. 2014;29(6):691–6.
  • [56] Khorrami MS, Movahedi M. Microstructure evolutions and mechanical properties of tubular aluminum produced by friction stir back extrusion. Mater Des. 2015;1980–2015(65):74–9.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-619ec659-7c57-4467-9b9d-4d74b41239c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.