PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Spatial distribution and conservation strategy of the Adansonia digitata L. in the conditions of climate change and parasitism by Analeptes trifasciata F. in Togo

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Rozmieszczenie przestrzenne i strategia ochrony Adansonia digitata L. w warunkach zmian klimatycznych i pasożytnictwa ze strony Analeptes trifasciata F. w Togo
Języki publikacji
EN
Abstrakty
EN
Baobab (Adansonia digitata L.) is a multiple-use species of high socio-economic importance in tropical Africa. It faces anthropogenic, climatic and parasitic pressures that are likely to affect its sustainability. This study provides new elements for more effective baobab management in the context of climate and global change in Togo. Specifically, it aims to: (i) determine the impact of climate change on the spatial distribution of A. digitata and A. trifasciata, and (ii) identify priority areas for the conservation and sustainable use of A. digitata co-products in the face of climate change and parasitism in Togo. The algorithm based on the maximum entropy of the baobab was developed in order to model potential habitats. Modelling was based on 17 environmental variables and occurrences of A. digitata and its parasite, Analeptes trifasciata in West Africa. The algorithm of maximum entropy (MaxEnt) was used. Forecasts were performed for SSP 126 and SSP 585 scenarios. Habitats were prioritised for conservation by combining current and future models using Zonation software. Currently, A. digitata and to A. trifasciata are predicted to occupy about 80.1 % and 91 % of the Togolese territory, respectively. By 2055, about 50 % of the highly favourable habitat for A. digitata will have been lost due to unfavourable habitat. This decline is greater in the SSP 585 scenario than SSP 126 scenario. It is recommended to implement an integrated pest management strategy and to introduce A. digitata in the most favourable areas, considering the spatial distribution of the parasite. Conservation of A. digitata must take into account areas suitable for its growth, development and reproduction. In situ conservation in agroforestry systems and home gardens should be promoted for the sustainable use of A. digitata by-products in Togo.
PL
Baobab (Adansonia digitata L.) jest wielofunkcyjnym gatunkiem o dużym znaczeniu społeczno-gospodarczym w tropikalnej Afryce. Roślina ta stoi w obliczu antropogenicznej, klimatycznej i pasożytniczej presji, która prawdopodobnie wpłynie na jej długoterminowe przetrwanie. Niniejsza praca dostarcza nowych elementów do bardziej efektywnego zarządzania baobabem w kontekście zmian klimatycznych i globalnych w Togo. W szczególności: (i) zidentyfikowano obecne potencjalne siedliska A. digitata i jego pasożyta A. trifasciata; (ii) oszacowano wpływ zmian klimatycznych na przestrzenne rozmieszczenie A. digitata i A. trifasciata; oraz (iii) określono priorytetowe siedliska dla ochrony i zrównoważonego użytkowania A. digitata w obliczu zmian klimatycznych i ataków pasożyta A. trifasciata w Togo. Modele zostały uruchomione na podstawie 17 zmiennych środowiskowych i punktów występowania A. digitata i A. trifasciata w Afryce Zachodniej, przy użyciu algorytmu maksymalnej entropii (MaxEnt). Prognozy przeprowadzono w ramach scenariuszy SSP 126 i SSP 585. Siedliska chronione zostały uszeregowane priorytetowo poprzez połączenie obecnych i przyszłych modeli przy użyciu oprogramowania Zonation. Przewiduje się, że około 80,1 % terytorium Togo jest obecnie bardzo korzystne dla A. digitata i 91 % dla A. trifasciata. Do 2055 roku około 50 % bardzo korzystnych siedlisk dla A. digitata zostanie utraconych na rzecz niekorzystnych siedlisk. Spadek ten jest większy w przypadku scenariusza SSP 585. Zaleca się wdrożenie zintegrowanej strategii ochrony przed szkodnikami. Sugerowana jest strategia ochrony in situ dla A. digitata uwzględniająca obszary priorytetowe. Należy zachęcać do ochrony circa-situ w systemach rolno-leśnych i ogrodach przydomowych.
Rocznik
Tom
Strony
7--23
Opis fizyczny
Bibliogr. 64 poz., rys., tab.
Twórcy
  • Forest Sciences Laboratory (LSF), Department of Environmental Planning and Management, Faculty of Agricultural Sciences, University of Abomey-Calavi (UAC), 01 BP 526, Cotonou, Benin
  • Laboratoire de Botanique et Ecologie Végétale (LBEV), Département de Botanique, Faculté des Sciences (FDS), Université de Lomé (UL), 01 BP 1515, Lomé 1, Togo
  • Laboratoire de Botanique et Ecologie Végétale (LBEV), Département de Botanique, Faculté des Sciences (FDS), Université de Lomé (UL), 01 BP 1515, Lomé 1, Togo
  • West Africa Plant Red List Authority (WAPRLA), IUCN Species Survival Commission, Rue Mauverney 28, 1196 Gland, Switzerland
  • Forest Sciences Laboratory (LSF), Department of Environmental Planning and Management, Faculty of Agricultural Sciences, University of Abomey-Calavi (UAC), 01 BP 526, Cotonou, Benin
  • Laboratory of Ecology, Botany and Plant Biology (LEB), Faculty of Agronomy, University of Parakou (UP), 03 BP 125, Parakou, Benin
  • Laboratoire de Botanique et Ecologie Végétale (LBEV), Département de Botanique, Faculté des Sciences (FDS), Université de Lomé (UL), 01 BP 1515, Lomé 1, Togo
  • Forest Sciences Laboratory (LSF), Department of Environmental Planning and Management, Faculty of Agricultural Sciences, University of Abomey-Calavi (UAC), 01 BP 526, Cotonou, Benin
Bibliografia
  • 1. Diop, A.G., Sakho, M., Dornier, M., Cisse, M., Reynes, M. Le baobab africain (Adansonia digitata L.): principales caractéristiques et utilisations. Fruits, 2005; volume 61(1), pp. 55–69.
  • 2. Kebenzikato, A.B., Atakpama, W., Samarou, M., Kperkouma, W., Batawila, K., Akpagana, K. Importance socio-économique du baobab (Adansonia digitata) au Togo. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 2023; volume 11(3), pp. 294–302.
  • 3. Kebenzikato, A.B., Wala, K., Atakpama, W., Dourma, M., Woégan, Y.A., Dimobé, K. Connaissances ethnobotaniques du baobab (Adansonia digitata L.) au Togo. Biotechnol Agron Soc Environ, 2015; volume 19(3), pp. 246–260.
  • 4. Kebenzikato, A.B., Wala, K., Dourma, M., Atakpama, W., Dimobe, K., Pereki, H. Distribution et structure des parcs à Adansonia digitata L. (baobab) au Togo. Afrique Sci, 2014; volume 10(2), pp. 434–449.
  • 5. Niassy, S., Diarra, K., Niang, A.A., Coache, A. Entomological survey and biodiversity conservation in the Madeleine Island Park of Senegal: Analeptes trifasciata (Coleoptera, Cerambycidae), a threat to the insular baobab. International Journal of Biological and Chemical Sciences, 2011; volume 5(1), pp. 386–391.
  • 6. Birhane, E., Asgedom, K.T., Tadesse, T., Hishe, H., Abrha, H., Noulèkoun, F. Vulnerability of baobab (Adansonia digitata L.) to human disturbances and climate change in western Tigray, Ethiopia: Conservation concerns and priorities. Global Ecology and Conservation, 2020; volume 22.
  • 7. Sanchez, A., Osborne, P., Haq, N. Identifying the global potential for baobab tree cultivation using ecological niche modelling. Agroforestry Systems, 2010; volume 80(2), pp. 191–201.
  • 8. Mairi, D. Rapport spécial du GIEC sur le changement climatique et les terres émergées: quels impacts pour l’Afrique? CRDI, 2019.
  • 9. Masson-Delmotte, V., Zhai, P., Pörtner, H., Roberts, D., Skea, J., Shukla, P. GIEC, 2018: Résumé à l’intention des décideurs, Réchauffement planétaire de 1, 5°C. Groupe d’experts intergouvernemental sur l’évolution du climat, 2019.
  • 10. Patrut, A., Woodborne, S., Patrut, R.T., Rakosy, L., Lowy, D.A., Hall, G., von Reden K.F. The demise of the largest and oldest African baobabs. Nature Plants, 2018; volume 4(7), pp. 423–426.
  • 11. Brunck, F., Fabre, J. Note sur Analeptes trifasciata Fabricius, coléoptère cérambycide, grave ravageur dʼAnacardium occidentale en Côte dʼIvoire. BOIS & FORETS DES TROPIQUES, 1970; volume 134, pp. 15–19.
  • 12. Atakpama, W., Gouwakinnou, G.N., Dimobe, K., Batawila, K., Natta, A.K., Akpagana, K. Habitat suitability of subpopulations of Adansonia digitata L. in West Africa: Implications for conservation and domestication. Trees, Forests and People, 2023; volume 12, p. 100397.
  • 13. INSEED. 5ème recensement general de la population et de l’habitat (RGPH-5). Lomé, Togo: Ministère de la Planification du Développement et de la Coopération, 2022.
  • 14. Lamouroux, M. Note explicative N 34 : Carte pédologique du Togo au 1/1.000.000. Paris, France: ORSTOM, 1969; pp. 91.
  • 15. Brunel, J.F., Hiepko, P., Scholz, H. Flore analytique du Togo : Phanerogames. Eschborn: GTZ; 1984. pp. 751.
  • 16. Ern, H. Die Vegetation Togos, Gliederung, Gefährdung, Erhaltung. Willdenowia. 1979; volume 9, pp. 295–315.
  • 17. Akpagana, K., Bouehet, P. Etat actuel des connaissances sur la flore et la végétation du Togo. Acta Botanica Gallica, 1994; volume 141(3), pp. 367–372.
  • 18. Padakale, E., Atakpama, W., Dourma, M., Dimobe, K., Wala, K., Guelly, A.K., Akpagana, K. Woody species diversity and structure of Parkia biglobosa Jacq. Dong parklands in the sudanian zone of Togo (West Africa). Annual Review & Research in Biology, 2015; volume 6(2), pp. 103–114.
  • 19. Folega, F., Atakpama, W., Kanda, M., Wala, K., Batawila, K., Akpagana, K. Agroforestry parklands and carbon sequestration in tropical Sudanese region of Togo. Rev Mar Sci Agron Vét, 2019; volume 7(4), pp. 563–570.
  • 20. Atakpama, W., Atoemne, K., Egbelou, H., Padakale, E., Batawila, K., Akpagana, K. Distribution et démographie des parcs à rôniers dans la Région des Savanes du Togo. African Journal on Land Policy and Geospatial Sciences, 2022; volume 5(2), pp. 290–302.
  • 21. Dourma, M., Batawila, K., Wala, K., Kokou, K., Guelly, K.A., Bellefontaine, R., de Foucault, B., Akpagana, K. Régénération naturelle des peuplements à Isoberlinia spp. En zone soudanienne au Togo. Acta Botanica Gallica: Botany Letters, 2009; volume 156(3), pp. 415–425.
  • 22. Atsri, H.K., Abotsi, K.E., Kokou, K., Guellu K.A., Bellefontaine, R. Enjeux écologiques de la conservation des mosaïques forêt-savane semi-montagnardes au centre du Togo (Afrique de l’Ouest ). Journal of Animal & Plant Sciences, 2018; volume 38(1), pp. 6112–6128.
  • 23. Kokou, K., Atato, A., Bellefontaine, R., Kokuste, A.D., Caballé, G. Diversité des forêts denses sèches du Togo (Afrique de lʼOuest). Rev Ecol Terre Vie, 2006; volume 61, pp. 225–246.
  • 24. Pereki, H., Wala, K., Thiel-Clemen, T., Bessike, M.P.B., Zida, M., Dourma, M., Batawila, K., Akpagana, K. Woody species diversity and important value indices in dense dry forests in Abdoulaye Wildlife Reserve (Togo, West Africa). Int J Biodivers Conserv, 2013; volume 5(6), pp. 358–366.
  • 25. Akpagana, K. Recherches sur les forêts denses humides du Togo [Th. Doc.]. France: Univ. Bordeaux III; 1989.
  • 26. Kombate, B., Dourma, M., Folega, F., Woegan, A.Y., Akpagana, K. Structure et potentiel de séquestration de carbone des formations boisées du Plateau Akposso en zone sub-humide au Togo. Afrique Sci, 2019; volume 15(2), pp. 70–79.
  • 27. Djiwa, O., Pereki, H., Guelly, A.K. Typology of cocoa-based agroforestry systems of the semi-deciduous forest zone in Togo (West Africa). Int J Biodivers Conserv, 2020; volume 12(4), pp. 270–282.
  • 28. Koda, D.K., Adjossou, K., Djego, J.G., Guelly, K.A. Diversité et usages des espèces fruitières des systèmes agroforestiers à caféiers du Plateau-Akposso au Togo. Afrique Science, 2016; volume 12(4), pp. 113–119.
  • 29. Koda, D.K., Chrif, M., Adjossou, K., Amgnaglo, K.B., Diwediga, B., Agbodan, K.M.L., Guelly, K.A. Typology of coffee-based agroforestry systems in the semi-deciduous forest zone of Togo (West Africa). International Journal of Biodiversity and Conservation. 2019;11(7):199–211.
  • 30. Batawila, K. Recherches sur les formations dégradées et jachères de la plaine côtière du sud Togo [Mém. DEA]. Lomé, Togo: Univ. Lomé; 1997.
  • 31. Atakpama, W., Assima, T., Nare, M.T., Egbelou, H., Samarou, M., Folega, F. La foresterie communautaire au Togo : Où en sommes-nous? Revue Marocaine des Sciences Agronomiques et Vétérinaires, 2023; volume 11(4), pp. 532–543.
  • 32. Folega, F., Andrianamenoso-Rakotondrasoa, M., Wala, K., Woegan, Y.A., Kanda, M., Pereki, H., Polo-Akpisso, A., Batawila, K., Akpagana, K. Écologie et dynamique spatio-temporelle des mangroves au Togo. VertigO, 2017; volume 17(3).
  • 33. Chase, M.W., Christenhusz, M.J.M., Fay, M.F., Byng, J.W., Judd, W.S., Soltis, D.E. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 2016; volume 181(1), pp. 1–20.
  • 34. Kone, S., Sika-Piba, N.A., Dagnogo, M., Allou, K. Fluctuations des différents stades de développement de Analeptes trifasciata F. au Centre-Nord de la Côte d’Ivoire. International Journal of Biological and Chemical Sciences, 2019; volume 13(6), pp. 2646–2656.
  • 35. Kra, K.D., Kwadjo, K.E., Douan, B.G., Kouame, K.L., Ouattara, K.V., Doumbia, M. Évaluation des dégâts de Analeptes trifasciata (Coleoptera: Cerambycidae) sur les anacardiers dans les régions du Béré et de l’Iffou (Côte d’Ivoire). Journal of Applied Biosciences, 2017; volume 112, pp. 10969–10977.
  • 36. Biaou, S., Gouwakinnou, G.N., Noulèkoun, F., Salako, K.V., Kpoviwanou, J.M.R.H., Houehanou, T.D. Incorporating intraspecific variation into species distribution models improves climate change analyses of a widespread West African tree species (Pterocarpus erinaceus Poir, Fabaceae). Global Ecology and Conservation, 2023; volume 45, e02538.
  • 37. FAO/IIASA/ISRIC/ISSCAS/JRC. Harmonized World Soil Database (version 1.2). Laxenburg, Austria: FAO, Rome, Italy and IIASA, 2012; p. 38.
  • 38. Régnière, J. Predicting insect continental distributions from species physiology. Unasylva, 2009; volume 60, pp. 37–42.
  • 39. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int J Clim, 2005; volume 25, pp. 1965–1978.
  • 40. Fick, S.E., Hijmans, R.J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International journal of climatology, 2017; volume 37(12), pp. 4302–4315.
  • 41. Escobar, L.E., Awan, M.N., Qiao, H. Anthropogenic disturbance and habitat loss for the red-listed Asiatic black bear (Ursus thibetanus): Using ecological niche modeling and nighttime light satellite imagery. Biological Conservation, 2015; volume 191, pp. 400–407.
  • 42. Booth, T.H. Checking bioclimatic variables that combine temperature and precipitation data before their use in species distribution models. Austral Ecology, 2022; volume 47(7), pp. 1506–1514.
  • 43. Lê, S., Josse, J., Husson, F. FactoMineR: an R package for multivariate analysis. Journal of statistical software, 2008; volume 25, pp. 1–18.
  • 44. Husson, B., Certain, G., Filin, A., Planque, B. Suitable habitats of fish species in the Barents Sea. Fisheries Oceanography, 2020; volume 29(6), pp. 526–540.
  • 45. Phillips, S.J., Dudık, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 2008; volume 31, pp. 161–175.
  • 46. Baldwin, R.A. Use of maximum entropy modeling in wildlife research. Entropy, 2009; volume 11(4), pp. 854–866.
  • 47. Moukrim, S., Lahssini, S., Mharzi, A., Alaoui, H., Rifai, N., Arahou, M., Rhazi, L. Modélisation de la distribution spatiale des espèces endémiques pour leur conservation : cas de l’Argania spinosa (L.) Skeels. Revue d'écologie, 2018; volume 73(1), pp. 153–166.
  • 48. Guisan, A., Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecological modelling, 2000; volume 135(2–3), pp. 147–186.
  • 49. Hanley, J.A., McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 1982; volume 143(1), pp. 29–36.
  • 50. Fawcett T. An introduction to ROC analysis. Pattern recognition letters, 2006; volume 27(8), pp. 861–874.
  • 51. Araújo, M.B., Pearson, R.G., Thuiller, W., Erhard, M. Validation of species–climate impact models under climate change. Global change biology, 2005; volume 11(9), pp. 1504–1513.
  • 52. Miller, R.G. The jackknife-a review. Biometrika, 1974; volume 61(1), pp. 1–15.
  • 53. Sanchez, A.C. Predicting suitable areas for cultivation and conservation of the baobab tree and investigating superior sources of planting material: University of Southampton; 2010.
  • 54. Cuni-Sanchez, A., Osborne, P.E., Haq, N. Identifying the global potential for baobab tree cultivation using ecological niche modelling. Agrofor Syst, 2010; pp. 80.
  • 55. Sanchez, A.C., Osborne, P.E., Haq, N. Climate change and the African baobab (Adansonia digitata L.): the need for better conservation strategies. African Journal of Ecology, 2011; volume 49(2), pp. 234–245.
  • 56. Jones, T. A note on Analeptes trifasciata Fabr. and Paranaleptes reticulata Thoms. (Coleop. Lamiinae) two tree girdling beetles of Tropical Africa. East Afr Agric Forestry J, 2015; volume 27(1), pp. 36–39.
  • 57. N'Goran, S.W.M.O., Koffi, K.M., Akesse, E.N., Ehounou, P.G. Morphométrie des adultes de Diastocera trifasciata (Fabricius, 1775)(Coleoptera: Cerambycidae), ciseleur des branches d’anacardiers dans la région du Gbêkê (Centre de la Côte d’Ivoire). Journal of Applied Biosciences, 2020; volume 148(1), pp. 15230–15238.
  • 58. Assogbadjo, A.E., Kakaï, R.G., Chadare, F., Thomson, L., Kyndt, T., Sinsin, B. Folk classification, perception, and preferences of baobab products in West Africa: consequences for species conservation and improvement. Economic Botany, 2008; volume 62(1), pp. 74–84.
  • 59. Saguez, J., Gagnon, A., Kichou, D., Rioux, S., Zoghlami, S., Blondlot, A. Impact des changements climatiques et mesures dʼadaptations pour les ravageurs présents et potentiels en grandes cultures au Québec. Projet PV 3.2-DP-CÉROM-5-Revue de littérature 72, p. 2017.
  • 60. Fuhrer, J. Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agriculture, Ecosystems & Environment, 2003; volume 97(1–3), pp. 1–20.
  • 61. Trnka, M., Muška, F., Semerádová, D., Dubrovský, M., Kocmánková, E., Žalud, Z. European Corn Borer life stage model: Regional estimates of pest development and spatial distribution under present and future climate. Ecological Modelling, 2007; volume 207(2), pp. 61–84.
  • 62. Ganglo, J.C. Ecological niche model transferability of the white star apple (Chrysophyllum albidum G. Don) in the context of climate and global changes. Scientific Reports, 2023; volume 13(1).
  • 63. Ganglo, J.C., Djotan, G.K., Gbètoho, J.A., Kakpo, S.B., Aoudji, A.K., Koura, K. Ecological niche modeling and strategies for the conservation of Dialium guineense Willd. (Black velvet) in West Africa. International Journal of Biodiversity and Conservation, 2017; volume 9(12), pp. 373–388.
  • 64. Soberon, J., Peterson, A.T. Interpretation of Models of Fundamental Ecological Niches and Species’ Distributional Areas. Biodiversity Informatics, 2005; volume 2, pp. 1–10.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-619b461d-ffce-48d5-9099-9a8212bff157
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.