Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the microstructural and mechanical characterisation of hybrid composites with a metal matrix was conducted. Al2O3 nanoparticles and CNTs were added to strengthen an aluminium alloy (AA 7075) using solid-state powder metallurgy. Utilizing XRD analysis and scanning electron microscope (SEM), microstructural characterization was carried out. Uniaxial compression and microhardness testing were performed to determine how the hybrid composites behaved mechanically. The microstructural research revealed that the nanoparticle dispersion in the matrix is uniform. The XRD plots and the Williamson-Hall equation were used to evaluate the crystallite size, lattice strain and dislocation density. In comparison to the base alloy, the composites have better strength and micro hardness.
Czasopismo
Rocznik
Tom
Strony
226--234
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
- A.U. College of Engineering, Andhra University, Visakhapatnam
autor
- A.U. College of Engineering, Andhra University, Visakhapatnam
autor
- SIET, Amalapuram
Bibliografia
- 1. Wang W., Li X., Liu W., Xing F., Wang J., Zhang K., Experimental study on hydrophobic properties and corrosivity of laser cleaned 7075 aluminum alloy anodized film surface, Optics & Laser Technology 2023, 166.
- 2. XuanRui Y., Feng Z.G., Hua J.H., Xiang S.A., A data driven model for estimating the fatigue life of 7075-T651 aluminum alloy based on the updated BP model, Journal of Materials Research and Technology 2023, 24.
- 3. Jiang H., Ren Z., Zou Z., Yuan S., Yi Y., Reinforcement effect of cutting process on machined surface quality and performance of aviation aluminum alloy 7075 based on Oxley-Welsh theory, Journal of Manufacturing Processes 2023, 95.
- 4. Wang Ch., Zou F., Zhou E., Fan Z., Ge E., An Q., Ming W., Chen M., Effect of split sleeve cold expansion on microstructure and fatigue performance of 7075-T6 aluminum alloy holes, International Journal of Fatigue, Part B 2023, 167.
- 5. Shi S., Cho S., Goto T., Sekino T., The effects of sintering temperature on mechanical and electrical properties of Al2O3/Ti composites, Materials Today Communications 2020, 25.
- 6. Kang S., Zhao X., Guo J., Liang J., Sun J., Yang Y., Yang L., Liao R., Randall C.A., Thermal-assisted cold sintering study of Al2O3 ceramics: Enabled with a soluble γ-Al2O3 intermediate phase, Journal of the European Ceramic Society 2023, 43, 2.
- 7. Bahgat M., Farghali A.A., El Rouby W.M.A., Khedr M.H., Synthesis and modification of multi-walled carbon nano-tubes (MWCNTs) for water treatment applications, Journal of Analytical and Applied Pyrolysis 2011, 92(2), 307-313.
- 8. Raza I., Hussain M., Khan A.N., Katzwinkel T., Feldhusen J.,Properties of light weight multi walled carbon nano tubes (MWCNTs) nano-composites, International Journal of Lightweight Materials and Manufacture 2021, 4(2), 195-202.
- 9. Li S., Su Y., Ouyang Q., Zhang D., In-situ carbon nanotubecovered silicon carbide particle reinforced aluminum matrix composites fabricated by powder metallurgy, Materials Letters 2016, 167, 118-121.
- 10. Zhang J., Liu Q., Yang S., Chen Z., Liu Q., Jiang Z., Microstructural evolution of hybrid aluminum matrix composites reinforced with SiC nanoparticles and graphene/graphite prepared by powder metallurgy, Progress in Natural Science: Materials International 2020, 30, 2.
- 11. Vasantha Kumar C.A., Selwin Rajadurai J., Influence of rutile (TiO2) content on wear and microhardness characteristics of aluminium-based hybrid composites synthesized by powder metallurgy, Transactions of Nonferrous Metals Society of China 2016, 26(1).
- 12. Pu B., Zhang X., Chen X., Lin X., Zhao D., Shi Ch., Liu E., Sha J., He Ch., Zhao N., Exceptional mechanical properties of aluminum matrix composites with heterogeneous structure induced by in-situ graphene nanosheet-Cu hybrids, Composites, Part B Engineering 2022, 234.
- 13. Kumar Bhoi N., Singh H., Pratap S., Naher S., Jain P.K., Zinc oxide nanorods effect in micro structural and mechanical characteristics of aluminium composite material, Materials Science and Engineering B 2022, 278.
- 14. Nayak K.Ch., Deshmukh P.R., Kumar Pandey A., Vemula P., Date P.P., Microstructural, physical and mechanical characterization of grinding sludge based aluminium metal matrix composite, Materials Science and Engineering A 2020, 773.
- 15. Sethi J., Jena S., Das S., Das K., Synthesis and properties of Al-AlN-CuCNT and Al-Y2W3O12-CuCNT hybrid composites, Materials Science and Engineering A 2021, 810, DOI: 10.1016/j.msea.2021.140919.
- 16. Liu J., Khan U., Coleman J., Fernandez B., Rodriguez P., Naher S., Brabazon D., Graphene oxide and grapheme nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared composite characteristics, Materials & Design 2016, 94.
- 17. Rajmohan T., Palanikumar K., Ranganathan S., Evaluation of mechanical and wear properties of hybrid aluminium matrix composites, Transactions of Nonferrous Metals Society of China 2013, 23, 9.
- 18. Tharanikumar L., Mohan B., Anbuchezhiyan G., Enhancing the microstructure and mechanical properties of Si3N4-BN strengthened Al-Zn-Mg alloy hybrid nano composites using vacuum assisted stir casting method, Journal of Materials Research and Technology 2022, 20, DOI: 10.1016/j.jmrt. 2022.08.093.
- 19. Toozandehjani M., Ostovan F., Jamaludin K.R., Amrin A., Matori K.A., Shafiei E., Process – microstructure – properties relationship in Al-CNTs-Al2O3 nanocomposites manufactured by hybrid powder metallurgy and microwave sintering process, Transactions of Nonferrous Metals Society of China 2020, 30, 9, DOI: 10.1016/S1003-6326(20)65383-3.
- 20. Rajmohan T., Palanikumar K., Arumugam S., Synthesis and characterization of sintered hybrid aluminium matrix composites reinforced with nanocopper oxide particles and microsilicon carbide particles, Composites Part B, Engineering 2014, 59.
- 21. Lemine A.S., Fayyaz O., Yusuf M., Shakoor R.A., Ahmad Z., Bhadra J., Al-Thani N.J., Microstructure and mechanical properties of aluminum matrix composites with bimodalsized hybrid NbC-B4C reinforcements, Materials Today Communications 2022, 33.
- 22. Wang X., Liu K., Su Y., Wang X., Cao H., Hua A., Ouyang Q., Zhang D., Synergistic enhancing effect of tungsten-copper coated graphite flakes and aluminum nitride nanoparticles on microstructure, mechanical and thermal properties of copper matrix composites, Materials Science and Engineering A 2022, 857, DOI: 10.1016/j.msea.2022.143987.
- 23. Sethi J., Das S., Das K., Evaluating the influence of milling time, and sintering temperature and time on the microstructural changes and mechanical properties of Al-Y2W3O12- AlN hybrid composites, Powder Technology 2021, 377, DOI: 10.1016/j.powtec.2020.08.094.
- 24. Mobasherpour I., Tofigh A.A., Ebrahimi M., Effect of nanosize Al2O3 reinforcement on the mechanical behavior of synthesis 7075 aluminum alloy composites by mechanical alloying, Materials Chemistry and Physics 2013, 138(2-3).
- 25. Salur E., Aslan A., Kuntoğlu M., Acarer M., Effect of ball milling time on the structural characteristics and mechanical properties of nano-sized Y2O3 particle reinforced aluminum matrix composites produced by powder metallurgy route, Advanced Powder Technology 2021, 32, 10, DOI: 10.1016/j.apt.2021.08.031.
- 26. Karunanithi R., Ghosh D., Ghosh K.S., Bera S., Influence of particle size of the dispersoid on compressibility and sinterability of TiO2 dispersed Al 7075 alloy composites prepared by mechanical milling, Advanced Powder Technology 2014, 25, 5.
- 27. Wang X., Su Y., Qiu C., Zhu Ch., Wang X., Cao H., Zhang D., Ouyang Q., Mechanical behavior and interfacial microzones of SiCp(CNT) hybrid reinforced aluminum matrix composites, Materials Characterization 2022, 189.
- 28. Sethi J., Das S., Das K., The effect of milling time, and sintering temperature and time on the microstructure-property relationship of aluminium-matrix hybrid composites, Materials Today Communications 2023, 35.
- 29. Dinaharan I., Albert T., Effect of reinforcement type on microstructural evolution and wear performance of copper matrix composites via powder metallurgy, Materials Today Communications 2023, 34.
- 30. Akcamlı N., Şenyurt B., Gokce H., Ağaoğulları D., Powder metallurgical fabrication of graphene reinforced neareutectic Al-Si matrix composites: Microstructural, mechanical and electrochemical characterization, Engineering Science and Technology, an International Journal 2022, 31.
- 31. Rodriguez Perez O., Rodriguez Gomez F.J., Garcia-Hinojosa J.A., Molina A., Garcia-Perez C.A., Gonzalez-Rodriguez J.G., Villanueva H., Microstructural and corrosion behavior of A413/Al2O3 metal matrix composites in 3.5 wt.% NaCl solution, International Journal of Electrochemical Science 2022, 17, 11.
- 32. Joshua K.J., Vijay S.J., Selvaraj D.P., Effect of nano TiO2 particles on microhardness and microstructural behavior of AA7068 metal matrix composites, Ceramics International 2018, 44, 17.
- 33. Akinwamide S.O., Lesufi M., Akinribide O.J., Mpolo P., Olubambi P.A., Evaluation of microstructural and nanomechanical performance of spark plasma sintered TiFe-SiC reinforced aluminium matrix composites, Journal of Materials Research and Technology 2020, 9, 6.
- 34. Nayak K.C., Rane K.K., Date P.P., Srivatsan T.S., Synthesis of an aluminum alloy metal matrix composite using powder metallurgy: Role of sintering parameters, Applied Sciences 2022, 12, 8843, DOI: 10.3390/app12178843.
- 35. Hua A., Su Y., Cai Y., Wang X., Liu K., Cao H., Zhang D., Ouyang Q., Fabrication, microstructure characterization and mechanical properties of B4C microparticles and SiC nanowires hybrid reinforced aluminum matrix composites, Materials Characterization 2022, 193.
- 36. Xie K., Zhang G., Huang H., Zhang J., Liu Z., Cai B., Investigation of the main strengthening mechanism of carbon nanotube reinforced aluminum composites, Materials Science and Engineering: A 2021, 804, DOI: 10.1016/ j.msea.2021.140780.
- 37. Zhang X., Li S., Pan B., Pan D., Zhou S., Yang S., Jia L., Kondoh K., A novel strengthening effect of in-situ nano Al2O3w on CNTs reinforced aluminum matrix nanocomposites and the matched strengthening mechanisms, Journal of Alloys and Compounds 2018, 764.
- 38. Park J.G., HoonKeum D., Lee Y.H., Strengthening mechanisms in carbon nanotube-reinforced aluminum composites, Carbon 2015, 95.
- 39. Awotunde M.A., Olubambi P.A., Chen D., Compressive deformation behaviour and toughening mechanisms of spark plasma sintered NiAl-CNT composites, Ceramics International 2022, 48, 11.
- 40. Gao Y.-l, Kou S.-q, Dai J.-n, Wang Z.-f, Shu S.-l, Zhang S., Qiu F., Jiang Q.-ch, Microstructural configuration and compressive deformation behavior of a TiAl composite reinforced by Mn and in situ Ti2AlC particles, Materials Science and Engineering: A 2021, 823, DOI: 10.1016/j.msea.2021.141772.
- 41. Rezayat M., Deformation mechanism in particulate metal matrix composites, Journal of Alloys and Compounds 2022, 890, DOI: 10.1016/j.jallcom.2021.161512.
- 42. Sankhla A.M., Patel K.M., Makhesana M.A., Giasin K., Pimenov D.Y., Wojciechowski S., Khanna N., Effect of mixing method and particle size on hardness and compressive strength of aluminium based metal matrix composite prepared through powder metallurgy route, Journal of Materials Research and Technology 2022, 18, DOI: 10.1016/j.jmrt.2022.02.094.
- 43. Salur E., Acarer M., Şavkliyildiz İ., Improving mechanical properties of nano-sized TiC particle reinforced AA7075Al alloy composites produced by ball milling and hot pressing, materials Today Communications 2021, 27, DOI: 10.1016/j.mtcomm.2021.102202.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-619a6936-86f7-424a-96a2-a1ed07195d65