PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synteza nanocząstek srebra przy użyciu ekstraktów roślinnych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Synthesis of silver nanoparticles using plant extracts
Języki publikacji
PL
Abstrakty
PL
Nanotechnologia jest jedną z najbardziej dynamicznych dyscyplin badań w dziedzinie inżynierii materiałowej, a liczba syntez nanocząstek metali znacząco rośnie na całym świecie. Ten trend związany jest z możliwościami wykorzystania ich w wielu dyscyplinach nauki, m.in. mikrobiologii, biotechnologii i diagnostyce laboratoryjnej. Ze względu na duże zainteresowanie nanocząstkami metody tworzenia i stabilizacji nanometrycznych cząstek stały się w ostatnich latach przedmiotem wielu badań. Udowodniono, że ekstrakty roślinne, zawierające zespół związków fitochemicznych, mogą być wykorzystywane do syntezy biogennych nanocząstek srebra. Powstałe struktury charakteryzują się stosownymi właściwościami, a metoda „zielonej” syntezy jest bardziej ekologiczna od innych technik. W związku z tym w artykule przedstawiono różne metody biosyntezy nanocząstek srebra oraz ich interdyscyplinarne zastosowania.
EN
The field of nanotechnology is the most dynamic region of research in material sciences and the synthesis of nanoparticles is picking up significantly throughout the world. This trend is related to the possibilities of using them in many disciplines, including microbiology, biotechnology and laboratory diagnostics. Due to the high interest in nanoparticles synthesis, the methods of formation and stabilization of nanometric particles have become the subject of many studies in recent years. Medicinally active plants have proven to be the best reservoirs of diverse phytochemicals for the synthesis of biogenic silver nanoparticles. The resulting structures are characterized by optimal properties, and the method used is more ecological than chemical reduction. Accordingly, this review presents different methods of preparation silver nanoparticles and application of these nanoparticles in different fields.
Rocznik
Strony
63--74
Opis fizyczny
Bibliogr. 78 poz., il. kolor., fot.
Twórcy
autor
  • Uniwersytet Medyczny w Lublinie, Zakład Biochemii i Biotechnologii, ul. Chodźki 1, 20-093 Lublin
  • Uniwersytet Marii Curie-Skłodowskiej w Lublinie, Zakład Botaniki, ul. Akademicka 19, 20-400 Lublin
  • Uniwersytet Marii Curie-Skłodowskiej w Lublinie, Zakład Fizjologii Roślin, ul. Akademicka 19, 20-400 Lublin
Bibliografia
  • [1] Iravani S., Korbekandi H., Mirmohammadi S.V., Zolfaghari B., Synthesis of silver nanoparticles: chemical, physical and biological methods, Res. Pharm. Sci. 2014, 9, 385-406.
  • [2] Rafique M., Sadaf I., Rafique M.S., Tahir M.B., A review on green synthesis of silver nanoparticles and their applications, Artif. Cells Nanomed. Biotechnol. 2017, 45, 1272-1291.
  • [3] Siddiqi K.S., Husen A., Rao R.A.K., A review on biosynthesis of silver nanoparticles and their biocidal properties, J. Nanobiotechnology 2018, 16, 14.
  • [4] Gonzalez A.L., Noguez C., Beranek J., Barnard A.S., Size, shape, stability, and color of plasmonic silver nanoparticles, J. Phys. Chem. C 2014, 118, 9128-9136.
  • [5] Ulrich A., Losert S., Bendixen N., Al-Kattan A., Hagendorfer H., Nowack B., Adlhart C., Ebert J., Lattuada M., Hungerbühler K., Critical aspects of sample handling for direct nanoparticle analysis and analytical challenges using asymmetric field flow fractionation in a multi-detector approach, J. Anal. At. Spectrom. 2012, 27, 1120-1130.
  • [6] Altemimi A., Lakhssassi N., Baharlouei A., Watson D.G., Lightfoot D.A., Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts, Plants (Basel) 2017, 6, E42.
  • [7] Gardea-Torresdey J.L., Gomez E., Peralta-Videa J.R., Parsons J.G., Troiani H., Yacaman M.J., Alfalfa Sprouts: A natural source for the synthesis of silver nanoparticles, Langmuir 2003, 19, 1357-1361.
  • [8] Krishnaraj C., Jagan E.G., Rajasekar S., Selvakumar P., Kalaichelvan P.T., Mohan N., Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens, Colloids Surf. B Biointerfaces 2010, 76, 50-56.
  • [9] Sathishkumar M., Sneha K., Yun Y.S., Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity, Bioresour. Technol. 2010, 101, 7958-7965.
  • [10] Cruz D., Fale P.L., Mourato A., Vaz P.D., Serralheiro M.L., Lino A.R., Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena), Colloids Surf. B Biointerfaces 2010, 81, 67-73.
  • [11] Klaus T., Joerger R., Olsson E., Granqvist C.G., Silver-based crystalline nanoparticles, microbially fabricated, Proc. Natl. Acad. Sci. USA 1999, 96, 13611-13614.
  • [12] Slawson R.M., Lohmeier-Vogel E.M., Lee H., Trevors J.T., Silver resistance in Pseudomonas stutzeri, Biometals 1994, 7, 30-40.
  • [13] Gadd G.M., Laurence O.S., Briscoe P.A., Trevors J.T., Silver accumulation in Pseudomonas stutzeri AG259, Biol. Metals 1989, 2, 168-173.
  • [14] Slawson R.M., Van Dyke M.I., Lee H., Trevors J.T., Germanium and silver resistance, accumulation, and toxicity in microorganisms, Plasmid 1992, 27, 72-79.
  • [15] Haefeli C., Franklin C., Hardy K., Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine, J. Bacteriol. 1984, 158, 389-392.
  • [16] Duran N., Marcato P.D., Alves O.L., Souza G.I., Esposito E., Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains, J. Nanobiotechnology 2005, 3, 8.
  • [17] Bhainsa K.C., D’Souza S.F., Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus, Colloids Surf. B Biointerfaces 2006, 47, 160-164.
  • [18] Vigneshwaran N., Ashtaputre N.M., Varadarajan P.V., Nachane R.P., Paralikar K.M., Balasubramanya R.H., Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus, Materials Letters 2007, 61, 1413-1418.
  • [19] Kitching M., Ramani M., Marsili E., Fungal biosynthesis of gold nanoparticles: mechanism and scale up, Microb. Biotechnol. 2015, 8, 904-917.
  • [20] Mollick M., Rana D., Dash S.K., Chattopadhyay S., Bhowmick B., Maity D., Mondal D., Pattanayak S., Roy S., Chakraborty M., Chattopadhyay D., Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications, Arabian J. Chem. 2015, DOI: 10.1016/j.arabjc.2015.04.033.
  • [21] Gomaa E.Z., Antimicrobial, antioxidant and antitumor activities of silver nanoparticles synthesized by Allium cepa extract: A green approach, JGEB 2017, 15, 49-57.
  • [22] Tippayawat P., Phromviyo N., Boueroy P., Chompoosor A., Green synthesis of silver nanoparticles in Aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity, PeerJ, 4, e2589; DOI: 10.7717/peerj.2589.
  • [23] He Y., Wei F., Ma Z., Zhang H., Yang Q., Yao B., Huang Z., Li J., Zenga C., Zhang Q., Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities, RSC Adv. 2017, 7, 39842.
  • [24] Kumar D.A., Palanichamy V., Roopan S.M., Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 127, 168-171.
  • [25] Ahmed S., Ahmad M., Swami B.L., Ikram S., Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract, J. Radiat. Res. Appl. Sci. 2016, 9, 1-7.
  • [26] Phull A.R., Abbas Q., Ali A., Raza H., Kim S.J., Zia M., Haq I., Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata, Future Journal of Pharmaceutical Sciences 2016, 2, 31-36.
  • [27] Vijay Kumara P.P.N., Pammi S.V.N., Kolluc P., Satyanarayanad K.V.V., Shamee U., Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity, Industrial Crops and Products 2014, 52, 562-566.
  • [28] Pattanayak S., Mollick M.R., Maity D., Chakraborty S., Dash S.K., Chattopadhyay S., Roy S., Chattopadhyay D., Chakraborty M., Butea monosperma bark extract mediated green synthesis of silver nanoparticles: Characterization and biomedical applications, J. Saudi. Chem. Soc. 2017, 21, 673-684.
  • [29] Raja S., Ramesh V., Thivaharan V., Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability, Arabian. J. Chem. 2017, 10, 253-261.
  • [30] Vaseeharan B., Sargunar C.G., Lin Y.C., Chen J.C., Green synthesis of Silver nanoparticles through Calotropis gigantea leaf extracts and evaluation of antibacterial activity against Vibrio alginolyticus, Nanotechnology Development 2012, 2, 12-16.
  • [31] Benakashani F., Allafchian A.R., Jalali S.A.H., Biosynthesis of silver nanoparticles using Capparis spinosa L. leaf extract and their antibacterial activity, Karbala Int. J. Mod. Sci. 2016, 2, 251-258.
  • [32] Shankar T., Karthiga P., Swarnalatha K., Rajkumar K., Green synthesis of silver nanoparticles using Capsicum frutescens and its intensified activity against E. coli, Resource-Efficient Technologies 2017, 3, 303-308.
  • [33] Moteriya P., Padalia H., Chanda S., Characterization, synergistic antibacterial and free radical scavenging efficacy of silver nanoparticles synthesized using Cassia roxburghii leaf extract, Journal of Genetic Engineering and Biotechnology 2017, 15, 505-513.
  • [34] Ponarulselvam S., Panneerselvam C., Murugan K., Aarthi N., Kalimuthu K., Thangamani S., Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities, Asian Pac. J. Trop. Biomed. 2012, 2, 574-580.
  • [35] Abdel-Aziz M.S., Shaheen M.S., El-Nekeety A., Abdel-Wahhab M.A., Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract, J. Saudi Chem. Soc. 2014, 18, 356-363.
  • [36] Mariselvam R., Ranjitsingh A.J.A., Usha Raja Nanthini A., Kalirajan K., Padmalatha C., Mosae Selvakumar P., Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 129, 537-541.
  • [37] Dhand V., Soumya L., Bharadwaj S., Chakra S., Bhatt D., Sreedhar B., Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity, Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 58, 36-43.
  • [38] Baskaran C., Ratha-bai B., Green Synthesis of silver nanoparticles using Coleus forskohlii roots extract and its antimicrobial activity against bacteria and fungus, Int. J. Drug Dev. Res. 2013, 5, 114-119.
  • [39] Ghaffari-Moghaddam M., Hadi-Dabanlou R., Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Crataegus douglasii fruit extract, J. Ind. Eng. Chem. 2014, 20, 739-744.
  • [40] Bagherzade G., Tavakoli M.M., Namaei M.H., Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria, Asian Pac. J. Trop. Biomed. 2017, 7, 227-233.
  • [41] Sathishkumar M., Sneha K., Yun Y.S., Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity, Bioresour. Technol. 2010, 101, 7958-7965.
  • [42] Jha A.K., Prasad K., Green synthesis of silver nanoparticles using Cycas leaf, Int. J. Green Nanotechnol. Phys. Chem. 2010, 1, 110-117.
  • [43] Gomathi M., Rajkumar P.V., Prakasam A., Ravichandran K., Green synthesis of silver nanoparticles using Datura stramonium leaf extract and assessment of their antibacterial activity, Resource-Efficient Technologies 2017, 3, 280-284.
  • [44] Paosen S., Saising J., Septama A.W., Voravuthikunchai S.P., Green synthesis of silver nanoparticles using plants from Myrtaceae family and characterization of their antibacterial activity, Mater Lett. 2017, 209, 201-206.
  • [45] Rao B., Tang R.C., Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract, Adv. Nat. Sci.: Nanosci. Nanotechnol. 2017, 8, 015014.
  • [46] Saxena A., Tripathi R.M., Zafar F., Singh P., Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity, Mater Lett. 2012, 67, 91-94.
  • [47] Husseiny S.M., Salah T.A., Anter H.A., Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities, BJBAS 2015, 4, 225-231.
  • [48] Veerasamy R., Xin T.Z., Gunasagaran S., Xiang T.F., Yang E.F., Jeyakumar N., Dhanaraj S.A., Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities, J. Saudi Chem. Soc. 2011, 15, 113-120.
  • [49] Sana S.S., Dogiparthi L.K., Green synthesis of silver nanoparticles using Givotia moluccana leaf extract and evaluation of their antimicrobial activity, Mater Lett. 2018, 226, 47-51.
  • [50] Dipankar C., Murugan S., The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts, Colloids Surf: B 2012, 98, 112-119.
  • [51] Sudha A., Jeyakanthan J., Srinivasan P., Green synthesis of silver nanoparticles using Lippia nodiflora aerial extract and evaluation of their antioxidant, antibacterial and cytotoxic effects, Resource-Efficient Technologies 2017, 3, 506-515.
  • [52] de Jesus Ruiz-Baltazar A., Reyes-Lopez S.Y., Larranaga D., Estevez M., Pérez R., Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties, Results in Physics 2017, 7, 2639-2643.
  • [53] Fathi H., Ramedani S., Heidari D., Nejat H.Y., Habibpour M., Ebrahimnejad P., Green synthesis of silver nanoparticles using Mentha aquatic L extract as the reducing agent, Journal of Kerman University of Medical Sciences 2017, 24, 1, 28-37.
  • [54] Moodley J.S., Krishna S.B.N., Pillay K., Govender P., Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential, Adv. Nat. Sci.: Nanosci. Nanotechnol. 2018, 9, 015011.
  • [55] Ahmad N., Sharma S., Alam K., Singh V.N., Shamsi S.F., Mehta B.R., Fatma A., Rapid synthesis of silver nanoparticles using dried medicinal plant of basil, Colloids Surf.: B 2010, 81, 81-86.
  • [56] Khalil M.M.H., Ismail E.H., El-Baghdady K.Z., Mohamed D., Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity, Arabian J. Chem. 2014, 7, 1131-1139.
  • [57] Ansari M.A., Alzohairy M.A., One-pot facile green synthesis of silver nanoparticles using seed extract of Phoenix dactylifera and their bactericidal potential against MRSA, Evid. Based Complement Alternat. Med. 2018, 1860280, DOI: 10.1155/2018/1860280.
  • [58] Paulkumar K., Gnanajobitha G., Vanaja M., Rajeshkumar S., Malarkodi C., Pandian K., Annadurai G., Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens, The Scientific World Journal 2014, 829894, DOI: 10.1155/2014/829894.
  • [59] Sadeghi B., Rostami A., Momeni S.S., Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity, Spectrochim. Acta: Part Am. 2015, 134, 326-332.
  • [60] Singh T., Jyoti K., Patnaik A., Singh A., Chauhan R., Chandel S.S., Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus, JGEB 2017, 15, 31-39.
  • [61] Ghoreishi S.M., Behpour M., Khayatkashani M., Green synthesis of silver and gold nanoparticles using Rosa damascena and its primary application in electrochemistry, Physica E 2011, 44, 97-104.
  • [62] Ghaedi M., Yousefinejad M., Safarpoor M., Zare Khafri H., Purkait M.K., Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties, J. Ind. Eng. Chem. 2015, 31, 167-172.
  • [63] Kumar B., Smita K., Cumbal L., Debut A., Green synthesis of silver nanoparticles using Andean blackberry fruit extract, Saudi J. Biol. Sci. 2017, 24, 45-50.
  • [64] Jemima G.C., Bio inspired synthesis of monodispersed silver nanoparticles using Sapindus emarginatus pericarp extract - Study of antibacterial efficacy, J. Saudi Chem. Soc., 2017, 21, 172-179.
  • [65] Nabikhan A., Kandasamy K., Raj A., Alikunhi N.M., Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L., Colloids Surf.: B 2010, 79, 488-493.
  • [66] Ahmed M.J., Murtaza G., Mehmood A., Bhatti T.M., Green synthesis of silver nanoparticles using leaves extract of Skimmia laureola: Characterization and antibacterial activity, Mater Lett. 2015, 153, 10-13.
  • [67] Ali M.S., Altaf M., Al-Lohedan H.A., Green synthesis of biogenic silver nanoparticles using Solanum tuberosum extract and their interaction with human serum albumin: Evidence of „corona” formation through a multi-spectroscopic and molecular docking analysis, J. Photochem. Photobiol. B Biol. 2017, 173, 108-119.
  • [68] Yasir M., Singh J., Tripathi M.K., Singh P., Shrivastava R., Green synthesis of silver nanoparticles using leaf extract of common arrowhead houseplant and its anticandidal activity, Pharmacogn. Mag. 2017, 13, 840-844.
  • [69] Padalia H., Moteriya P., Chanda S., Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential, Arabian J. Chem. 2015, 8, 732-741.
  • [70] Vigneshwaran N., Kathe A.A., Varadarajan P.V., Nachane R.P., Balasubramanya R.H., Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium, Colloids Surf.: B 2006, 53, 55-59.
  • [71] Chan Y.S., Don M.M., Biosynthesis and structural characterization of Ag nanoparticles from white rot fungi, Mater. Sci. Eng. C 2013, 33, 282-288.
  • [72] Gudikandula K., Vadapally P., Singara Charya M.A., Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies, OpenNano 2017, 2, 64-78.
  • [73] Echegoyen Y., Neren C., Nanoparticle release from nano-silver antimicrobial food containers, Food Chem. Toxicol. 2013, 62, 16-22.
  • [74] Gajbhiye S., Sakharwade S., Silver nanoparticles in cosmetics, JCDSA 2016, 6, 48-53.
  • [75] Singh R., Nalwa H.S., Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs, J. Biomed. Nanotechnol. 2011, 7, 489-503.
  • [76] Ueno K., Juodkazis S., Shibuya T., Mizeikis V., Yokota Y., Misawa H., Nanoparticle-enhanced Photopolymerization, J. Phys. Chem. C 2009, 113, 11720-11724.
  • [77] Ulbrich K., Hola K., Subr V., Bakandritsos A., Tucek J., Zboril R., Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, Release Control, and Clinical Studies. Chem. Rev. 2016, 116, 5338-5431.
  • [78] Liu X., Shan G., Yu J., Yang W., Ren Z., Wang X., Xie X., Chen H., Chen X., Laser heating of metallic nanoparticles for photothermal ablation applications, AIP Advances 2017, 7, 025308.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6199df75-0572-4ca3-ad5a-1cd235c37be2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.