Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a way of determining distribution of limit state exceedence time by a diagnostic parameter which determines accuracy of maintaining zero state. For calculations it was assumed that the diagnostic parameter is deviation from nominal value (zero state). Change of deviation value occurs as a result of destructive processes which occur during service. For estimation of deviation increasing rate in probabilistic sense, was used a difference equation from which, after transformation, Fokker-Planck differential equation was obtained [4, 11]. A particular solution of the equation is deviation increasing rate density function which was used for determining exceedance probability of limit state. The so-determined probability was then used to determine density function of limit state exceedance time, by increasing deviation. Having at disposal the density function of limit state exceedance time one determined service life of a system of maladjustment. In the end, a numerical example based on operational data of selected aircraft [weapon] sights was presented. The elaborated method can be also applied to determining residual life of shipboard devices whose technical state is determined on the basis of analysis of values of diagnostic parameters.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
45--49
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
- Air Force Institute of Technology, Warszawa, Poland, Księcia Bolesława 6;, 01-494 Warszawa, POLAND, mobile: +48 512 105 249
autor
- Military Technical Academy, Warszawa, Poland, Gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, POLAND
Bibliografia
- 1. Beckenbach E.F.: Modern mathematics for engineers (in Polish). Wydawnictwo Naukowe PWN, Warszawa, 1968
- 2. Bobrowski D.: Random ordinary differential equations (in Polish). Materials for doctorate and post-graduate studies, No. 7, Politechnika Poznańska, Poznań 1980
- 3. Bobrowski D.: Mathematical models and methods of reliability theory (in Polish). WNT, Warszawa, 1985
- 4. Casciati F., Roberts B.: Mathematical Models for Structural Reliability Analysis. Boca Raton/New York/London/Tokyo: CRC Press, 1996
- 5. DeLurgio S.A.: Forecasting principles and applications. University of Missouri-Kansas City. Irwin/McGraw-Hill, 1998
- 6. Dhillon, B.S.: Design Reliability. Fundamentals and Applications. Ottawa: Boca Raton/New York/London/ Washington: CRC Press, 1999
- 7. Gercbach I.B., Kordoński Ch. B.: Reliability models of technical objects (in Polish). WNT, Warszawa, 1968
- 8. Kałmucki W.: Prognozirowanije resursov detali maszin i elementov (in Russian). Kisziniev 1989
- 9. Kececioglu, D.B.: Reliability Engineering Handbook. Lancaster: DEStech Publications, 2002
- 10. Pham, H.: Handbook of Engineering Statistics. London: Springer-Verlag, 2006
- 11. Risken H.: The Fokker-Planck Equation. Methods of Solution and Applications. Springer Verlag, Berlin /Heidenberg/ New York/Tokyo, 1984
- 12. Ryžyk J.H., Gradsetyn J.S.: Tables of integrals, sums, series and products (in Polish), PWN. 1964
- 13. Tomaszek H., Ważny M.: Outline of the assessment method of durability against surface wear, with application of distribution of exceedance time of limit (permissible) state (in Polish). Radom: ZEM, Issue 3(155), 2008
- 14. Tomaszek H., Wroblewski H.: Fundamentals of assessment of operational effectiveness of aircraft armament systems (in Polish). Dom Wydawniczy „Bellona”, Warszawa, 2001
- 15. Tomaszek H., Żurek J., Jasztal M.: The predicting of failures hazardous for aircraft flight safety (in Polish). Radom: Wydawnictwo Naukowe JTE, 2008
- 16. Ważny M.: The method of determining the time concerning the operation of a chosen navigation and aiming device in the operation system. Eksploatacja i Niezawodność – Maintenance and Reliability, No. 2 (38)/2008, Lublin, 2008
- 17. Ważny M.: The metod for assessing residual durability of selected devices in avionics system. Eksploatacja I Niezawodność – Maintenance and Reliability, Nr3 (43)/2009, Lublin 2009
- 18. Zio, E.: Computational Methods For Reliability and Risk Analysis. Singapore: World Scientific Publishing, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6192cceb-d98b-4d67-a91a-00924b740138