PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effects of Nb addition on the microstructure and mechanical properties of melt spun Al-7075 alloy

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mechanical properties of the Al-7075 material, which is used in important areas such as automotive, aviation and defense industry, are still being studied by researchers. In this study, the effects of different proportions of Nb additives on the microstructure and mechanical properties of the rapidly solidified Al-7075 alloy was investigated. Rapid solidification processes were carried out with a single roller melt spinner at a disk surface speed of 25 m / s. Microstructure characterization was performed by using a scanning electron microscopy (SEM) and X-ray diffraction. According to the results, the Nb additive significantly increased the micro hardness of the Al-7075 alloy. The microhardness of the sample added with 0.5% by weight of Nb is 0.9 GPa. This value is 3 times higher than the sample without Nb added. The Nb contribution has led to modification of the dimensions and shapes of both α-Al and intermetallic phases. Nb addition reduced the average grain size from 9.1 μm to 2.46 μm.
Słowa kluczowe
Rocznik
Strony
16--25
Opis fizyczny
Bibliogr. 36 poz., il., tab., wykr.
Twórcy
  • Department of Fundamental Sciences and Engineering, Sivas University of Science and Technology, 58000, Sivas Turkey
  • Department of Materials Science and Engineering, Kastamonu University, 37000, Kastamonu, Turkey
autor
  • Department of Aeronautical Engineering, Sivas University of Science and Technology, 58000, Sivas, Turkey
Bibliografia
  • 1. S.K. Patel, V.P. Singh, B.S. Roy, B. Kuriachen, Recent research progresses in Al-7075 based in-situ surface composite fabrication through friction stir processing: A review, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. (2020). https://doi.org/10.1016/j.mseb.2020.114708.
  • 2. Y. Lin, S. Mao, Z. Yan, Y. Zhang, L. Wang, Melt spinning induces sub-micrometric/micrometric grained structure and dislocations in 7075 Al alloy, J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.08.146.
  • 3. J.R. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM Int. (1993).
  • 4. J.R. Davis, Light Metals and Alloys-Aluminum and Aluminum Alloys, Alloy. Underst. Basics. (2001).
  • 5. Y. Lin, B. Wu, S. Li, S. Mao, X. Liu, Y. Zhang, L. Wang, The quantitative relationship between microstructure and mechanical property of a melt spun Al-Mg alloy, Mater. Sci. Eng. A. (2015). https://doi.org/10.1016/j.msea.2014.10.047.
  • 6. M. Szymanek, B. Augustyn, D. Kapinos, S. Boczkal, J. Nowak, The production of material with ultrafine grain structure in Al-Zn alloy in the process of rapid solidification, Arch. Foundry Eng. (2014). https://doi.org/10.2478/afe-2014-0037.
  • 7. J. Rakhmonov, G. Timelli, F. Bonollo, Characterization of the solidification path and microstructure of secondary Al-7Si-3Cu-0.3Mg alloy with Zr, V and Ni additions, Mater. Charact. (2017). https://doi.org/10.1016/j.matchar.2017.03.039.
  • 8. Y. Chen, C.Y. Liu, Z.Y. Ma, H.F. Huang, Y.H. Peng, Y.F. Hou, Effect of Sc addition on the microstructure, mechanical properties, and damping capacity of Al–20Zn alloy, Mater. Charact. (2019). https://doi.org/10.1016/j.matchar.2019.109892.
  • 9. Y. Yang, J.J. Licavoli, S.A. Hackney, P.G. Sanders, Coarsening behavior of precipitate Al3(Sc,Zr) in supersaturated Al-Sc-Zr alloy via melt spinning and extrusion, J. Mater. Sci. (2021). https://doi.org/10.1007/s10853-021-05981-4.
  • 10. J. Luo, H. Luo, S. Li, R. Wang, Y. Ma, Effect of pre-ageing treatment on second nucleating of GPII zones and precipitation kinetics in an ultrafine grained 7075 aluminum alloy, Mater. Des. (2020). https://doi.org/10.1016/j.matdes.2019.108402.
  • 11. M.A. Moazam, M. Honarpisheh, Residual stress formation and distribution due to precipitation hardening and stress relieving of AA7075, Mater. Res. Express. (2019). https://doi.org/10.1088/2053-1591/ab59b6.
  • 12. Y. Wang, X. Wu, L. Cao, X. Tong, Y. Zou, Q. Zhu, S. Tang, H. Song, M. Guo, Effect of Ag on aging precipitation behavior and mechanical properties of aluminum alloy 7075, Mater. Sci. Eng. A. (2021). https://doi.org/10.1016/j.msea.2020.140515.
  • 13. R. Meshkabadi, G. Faraji, A. Javdani, A. Fata, V. Pouyafar, Microstructure and homogeneity of semi-solid 7075 aluminum tubes processed by parallel tubular channel angular pressing, Met. Mater. Int. (2017). https://doi.org/10.1007/s12540-017-6760-3.
  • 14. Y. Zhao, J. Liu, T.D. Topping, E.J. Lavernia, Precipitation and aging phenomena in an ultrafine grained Al-Zn alloy by severe plastic deformation, J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.156931.
  • 15. B. Binesh, M. Aghaie-Khafri, Modelling and optimization of semi-solid processing of 7075 Al alloy, Mater. Res. Express. (2017). https://doi.org/10.1088/2053-1591/aa8272.
  • 16. S.K. Gautam, N. Mandal, H. Roy, A.K. Lohar, S.K. Samanta, G. Sutradhar, Optimization of processing parameters of cooling slope process for semi-solid casting of ADC 12 Al alloy, J. Braz. Soc. Mech. Sci. Eng. (2018). https://doi.org/10.1007/s40430-018-1213-6.
  • 17. J. Liu, P. Zeng, S. Kou, Solidification cracking susceptibility of quaternary aluminium alloys, Sci. Technol. Weld. Join. (2021). https://doi.org/10.1080/13621718.2021.1893007.
  • 18. S. Marola, D. Manfredi, G. Fiore, M.G. Poletti, M. Lombardi, P. Fino, L. Battezzati, A comparison of Selective Laser Melting with bulk rapid solidification of AlSi10Mg alloy, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.01.309.
  • 19. M.F. Kilicaslan, S.S. Altaib, C.D. Vurdu, Effect of Ni Addition on the Morphology and Microstructure of Both Conventional Cast and Melt-Spun of Al–Si–Fe–Nb (at wt%) Alloy, Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00300-8.
  • 20. K. Ma, T. Hu, H. Yang, T. Topping, A. Yousefiani, E.J. Lavernia, J.M. Schoenung, Coupling of dislocations and precipitates: Impact on the mechanical behavior of ultrafine grained Al-Zn-Mg alloys, Acta Mater. (2016). https://doi.org/10.1016/j.actamat.2015.09.017.
  • 21. Y. Yang, J.J. Licavoli, P.G. Sanders, Improved strengthening in supersaturated Al-Sc-Zr alloy via melt-spinning and extrusion, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.154185.
  • 22. Q. Liu, M. Liu, C. Xu, W. Xiao, H. Yamagata, S. Xie, C. Ma, Effects of Sr, Ce and P on the microstructure and mechanical properties of rapidly solidified Al–7Si alloys, Mater. Charact. (2018). https://doi.org/10.1016/j.matchar.2018.04.018.
  • 23. E.J. Lavernia, T.S. Srivatsan, The rapid solidification processing of materials: Science, principles, technology, advances, and applications, J. Mater. Sci. (2010). https://doi.org/10.1007/s10853-009-3995-5.
  • 24. H. Jones, A perspective on the developed of rapid solidification and nonequilibrium processing and its future, Mater. Sci. Eng. A. (2001). https://doi.org/10.1016/S0921-5093(00)01552-5.
  • 25. X. Meng, D. Zhang, W. Zhang, C. Qiu, G. Liang, J. Chen, Microstructure and mechanical properties of a high-Zn aluminum alloy prepared by melt spinning and extrusion, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.152990.
  • 26. S. Liu, X. Wang, Q. Zu, B. Han, X. Han, C. Cui, Significantly improved particle strengthening of Al–Sc alloy by high Sc composition design and rapid solidification, Mater. Sci. Eng. A. (2021). https://doi.org/10.1016/j.msea.2020.140304.
  • 27. V. Hotea, J. Juhasz, F. Cadar, Grain refinement of 7075Al alloy microstructures by inoculation with Al-Ti-B master alloy, in: IOP Conf. Ser. Mater. Sci. Eng., 2017. https://doi.org/10.1088/1757-899X/200/1/012029.
  • 28. F. Wang, D. Qiu, Z.L. Liu, J.A. Taylor, M.A. Easton, M.X. Zhang, Crystallographic study of grain refinement of Al by Nb addition, J. Appl. Crystallogr. (2014). https://doi.org/10.1107/S1600576714004476.
  • 29. M. Nowak, L. Bolzoni, N. Hari Babu, Grain refinement of Al-Si alloys by Nb-B inoculation. Part I: Concept development and effect on binary alloys, Mater. Des. (2015). https://doi.org/10.1016/j.matdes.2014.08.066.
  • 30. S. V. Emani, J. Benedyk, P. Nash, D. Chen, Double aging and thermomechanical heat treatment of AA7075 aluminum alloy extrusions, J. Mater. Sci. (2009). https://doi.org/10.1007/s10853-009-3879-8.
  • 31. P.B. Prakash, K.B. Raju, K. Venkatasubbaiah, N. Manikandan, Microstructure Analysis and Evaluation of Mechanical Propertiesof Al 7075 GNP’s Composites, in: Mater. Today Proc., 2018. https://doi.org/10.1016/j.matpr.2018.03.010.
  • 32. C.M. Allen, K.A.Q. O’Reilly, P.V. Evans, B. Cantor, The effect of vanadium and grain refiner additions on the nucleation of secondary phases in 1XXX A1 alloys, Acta Mater. (1999). https://doi.org/10.1016/S1359-6454(99)00250-5.
  • 33. C. Shi, L. Zhang, G. Wu, X. Zhang, A. Chen, J. Tao, Effects of Sc addition on the microstructure and mechanical properties of cast Al-3Li-1.5Cu-0.15Zr alloy, Mater. Sci. Eng. A. (2017). https://doi.org/10.1016/j.msea.2016.10.063.
  • 34. M.F. Kiliçaslan, F. Yilmaz, S. Ergen, S.J. Hong, O. Uzun, Microstructure and microhardness of melt-spun Al-25Si-5Fe-XCo (X = 0, 1, 3, 5) alloys, Mater. Charact. (2013). https://doi.org/10.1016/j.matchar.2012.12.006.
  • 35. Y.C. Lee, A.K. Dahle, D.H. StJohn, J.E.C. Hutt, The effect of grain refinement and silicon content on grain formation in hypoeutectic Al-Si alloys, Mater. Sci. Eng. A. (1999). https://doi.org/10.1016/S0921-5093(98)00884-3.
  • 36. S.-J. Hong, C. Suryanarayana, Mechanical properties and fracture behavior of an ultrafine-grained Al-20 wt pct Si alloy, Metall. Mater. Trans. A. (2005). https://doi.org/10.1007/s11661-005-0187-z.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-618c4e9c-4cd1-40fe-af49-bd816ad74aae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.