PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Time constraints on experimental studies of lead apatites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of experimental studies on the synthesis and thermodynamic stability of selected Pb-apatites in terms of criteria determining termination of the experiments. Based on the case study, we indicate difficulties in analysing the obtained experimental data. Time-resolved sampling of precipitate formed during a dropwise synthesis of pyromorphite was performed and the results were compared to the literature data. It has been concluded that the Ostwald ripening time for synthesized solids depends primarily on the chemical composition of the intended Pb-apatite phase. We presented that heterogeneity of precipitate affects its dissolution in terms of repeatability of the results and equilibrating time. A unique 9-year-long experiment on vanadinite stability at a pH range from 2.0-6.0 revealed that among all tested dissolution conditions only the reactions at the pH = 3.5 can perform as the basis for some thermodynamic calculations. It has been concluded that the rate of phase transitions in the Pb-apatites group can be misleading in terms of determining the equilibrium of the system, and the experimental setup designed particularly to provide reliable controls in this aspect should be involved. Means in this respect have been proposed.
Rocznik
Strony
721--728
Opis fizyczny
Bibliogr. 37 poz., fot., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Al. Mickiewicza 30, 30-059, Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Al. Mickiewicza 30, 30-059, Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Al. Mickiewicza 30, 30-059, Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Al. Mickiewicza 30, 30-059, Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Al. Mickiewicza 30, 30-059, Kraków, Poland
Bibliografia
  • 1. Baikie, T., Schreyer, M., Wei, F., Herrin, J.S., Ferraris, C., Brink, F., Topolska, J., Piltz, R.O., Price, J., White, T.J., 2014. The influence of stereochemically active lone-pair electrons on crystal symmetry and twist angles n lead apatite-2H type structures. Mineralogical Magazine, 78: 325-345.
  • 2. Bajda, T., 2010. Solubility of mimetite Pb5(AsO4)3Cl at 5-55°C. Environmental Chemistry, 7: 268-278.
  • 3. Bajda, T., Szmit, E., Manecki, M., 2007. Removal of As(V) from solutions by precipitation of mimetite Pb5(AsO4)3Cl. In: Environmental Engineering (eds. L. Pawłowski, M. Dudzińska and A. Pawłowski): 119-124. Taylor and Francis, New York, Singapore.
  • 4. Baker, W.E., 1966. An X-ray diffraction study of synthetic members of the pyromorphite series. American Mineralogist, 51: 1712-1721.
  • 5. Campos, V., 2002. Arsenic in groundwater affected by phosphate fertilizers at Săo Paulo, Brazil. Environmental Geology, 42: 83-87.
  • 6. Cao, X., Ma, L.Q., 2004. Effect of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood. Environmental Pollution, 132: 435-442.
  • 7. Ceci, A., Kierans, M., Hillier, S., Persiani, A.M., Gadd, G.M., 2015. Bioweathering of mimetite and a general geomycological model for lead apatite mineral biotransformations. Applied and Environmental Microbiology, 81: 4955-4964.
  • 8. Cotter-Howells, J., 1996. Lead phosphate formation in soils. Environmental Pollution, 93: 9-16.
  • 9. Cotter-Howells, J., Caporn, S., 1996. Remediation of contaminated land by formation of heavy metal phosphates. Appied Geochemistry, 11 : 335-342.
  • 10. Dai, Y.S., Hughes, J.M., 1989. Crystal-structure refinements of vanadinite and pyromorphite. Canadian Mineralogist, 27: 189-192.
  • 11. Evans, H.T., Jr., Garrels, R.M., 1958. Thermodynamic equilibria of vanadium in aqueous systems as applied to the interpretation of the Colorado Plateau ore deposits. Geochimica et Cosmochimica Acta, 15: 131-149.
  • 12. Filippelli, G.M., 2008. The global phosphorus cycle: past, present and future. Elements, 4: 89-95.
  • 13. Flis, J., Borkiewicz, O., Bajda, T., Manecki, M., Klasa, J., 2010. Synchrotron-based X-ray diffraction of the lead apatite series Pbio(PO4)6Cl2 - Pb10(AsO4)6Cl2. Journal of Synchrotron Radiation, 17: 207-214.
  • 14. Flis, J., Manecki, M., Bajda, T., 2011. Solubility of pyromorphite Pb5(PO4)3Cl - mimetite Pb5(AsO4)3Cl solid solution series. Geochimica et Cosmochimica Acta, 75: 1858-1868.
  • 15. LeGeros, R.Z., 2008. Calcium phosphatebased osteoinductive materials. Chemical Reviews, 108: 4742-4753.
  • 16. Lenoble, V., Deluchat, V., Serpaud, B., Bollinger, J.C., 2003. Arsenite oxidation and arsenate determination by the molybdene blue method. Talanta, 61: 267-276.
  • 17. Ma, Q.Y., Traina, S.J., Logan, T.J., Ryan, J.A., 1993. In situ lead immobilization by apatite. Environmental Science and Technology, 27: 1803-1810.
  • 18. Ma, Q.Y., Logan, T.J., Traina, S.J., Ryan, J.A., 1994a. Eftects of NO3-, Cl- , F-, SO42-, and CO32- on Pb2+ immobilization by hydroxyapatite. Environmental Science and Technology, 28: 408-418.
  • 19. Ma, Q.Y., Traina, S. J., Logan, T.J., Ryan, J.A., 1994b. Effect of aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb immobilization by hydroxyapatite. Environmental Science and Technology, 28: 1219-1228.
  • 20. Ma, Q.Y., Logan, T.J., Traina, S.J., 1995. Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environmental Science and Technology, 29: 1118-1126.
  • 21. Magalhăes, M.C.F., Williams, P.A., 2007. Apatite group minerals: solubility and environmental remediation. In: Thermodynamics, Solubility and Environmental Issues (ed. T.M. Letcher): 327-342. Elsevier, New York.
  • 22. Manecki, M., Maurice, P.A., 2008. Siderophore promoted dissolution of pyromorphite. Soil Science, 173: 82-830.
  • 23. Manecki, M., Maurice, P.A., Traina S.J., 2000. Uptake of aqueous Pb by Cl-, F-, and OH- apatites: mineralogic evidence for nucleation mechanism. American Mineralogist, 85: 932-942.
  • 24. Pan, Y., Fleet, M.E., 2002. Phosphates: geochemical, geobiological, and materials importance. Reviews in Mineralogy and Geochemistry, 48: 13-49.
  • 25. Park, J.H., Bolan, N., Megharaj, M., Naidu, R., 2011. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. Journal of Hazardous Materials, 185: 829-836.
  • 26. Parkhurst, D.L., 1995. User's guide to PHREEQC - a computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations. U.S. Geological Survey Report: 95-4227.
  • 27. Pasteris, J.D., Wopenka, B., Valsami-Jones, E., 2008. Bone and tooth mineralization: why apatite? Elements, 4: 97-104.
  • 28. Puzio, B., Manecki, M., Kwaśniak-Kominek, M., 2018. Transition from endothermic to exothermic dis solution of hydroxyapatite Ca5(PO4)3OH - johnbaumite Ca5(AsO4)3OH solid solution series at temperatures ranging from 5 to 65°C. Minerals, 8: 1-21.
  • 29. Rakovan, J.F., J.D., Pasteris, 2015. A technological gem: materials, medical, and environmental mineralogy of apatite. Elements, 11: 195-200.
  • 30. Scheckel, K.G., Ryan, J.A., 2002. Effects of aging and pH on dissolution kinetics and stability of chloropyromorphite. Environmental Science and Technology, 36: 2198-2204.
  • 31. Schindler, M., Hawthorne, F.C., Baur, W.H., 2000. A crystal-chemical approach to the composition and occurrence of vanadium minerals. Canadian Mineralogist, 38: 1443-1456.
  • 32. Shannon, R.D., Calvo, C., 1973. Refinement of the crystal structure of synthetic chervetite, Pb2V2O7. Canadian Journal of Chemistry, 51: 70-76.
  • 33. Solecka, U., Bajda, T., Topolska, J., Zelek-Pogudz, S., Manecki M., 2018. Raman and Fourier transform infrared spectroscopic study of pyromorphite-vanadinite solid solutions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 190: 96-103.
  • 34. Sordyl, J., Puzio, B., Manecki, M., 2017. Quantitative determination of Ostwald ripening of mimetite. Mineralogia - Special Papers, 47: 53.
  • 35. Topolska, J., Borowicz, P., Manecki, M., Bajda, T., Kaschabek, S., Merkel, B.J., 2013. The effect of gluconic acid secretion by phosphate-solubilizing Pseudomonas putida bacteria on dissolution of pyromorphite Pb5(PO4)3Cl and Pb remobilization. Annales Societatis Geologorum Poloniae, 83: 343-351.
  • 36. Topolska, J., Latowski, D., Kaschabek, S., Manecki, M., Merkel, B.J., Rakovan, J., 2014. Pb remobilization by bacterially mediated dissolution of pyromorphite Pb5(PO4)3Cl in presence of phosphate-solubilizing Pseudomonas putida. Environmental Science and Pollution Research, 21: 1079-1089.
  • 37. Topolska, J., Manecki, M., Bajda, T., Borkiewicz O., Budzewski, P., 2016. Solubility of pyromorphite Pb5(PO4)3Cl at 5-65°C and its experimentally determined thermodynamic parameters. Journal of Chemical Thermodynamics, 98: 282-287.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61863c2a-3b07-4532-8d8c-1621753947a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.