PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Removal of Salinity in a Reed Bed System Using Mangroves and Bacteria in a Continuous Flow Series Reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The supply of clean water is a major environmental problem in some areas, which is possibly handled through the biodesalination technologies, a concept that involves separating the salt content, and reducing salinity, using bacteria and plants. This research therefore applied Avicennia marina (AM) and Rhizophora mucronata (RM) mangroves, in addition to Vibrio alginolyticus, in 12 reactor reed bed systems arranged in series (AM-RM) to attain a continuous flow. The evaluated salinity level was 20‰ and 25‰, obtained using artificial saline water. Meanwhile, the reed bed system, measuring 0.14 m3 (0.7×0.5×0.4 m), comprises a filter layer component, which consists of sand and gravel, with a diameter of 1 cm and 2 cm. This investigation was performed for 18 days, and samples were collected every 2 days, and the main parameters of salinity, Na, Cl and the potassium ion concentration, electric conductivity and Colony Forming Unit (CFU), as well as the supporting parameters, including pH and temperature, were evaluated. The results showed a water discharge rate of 18 mL/min, and the addition of Vibrio alginolyticus, produced the best salinity level (90%) on day 6 of operation. The outcome of the initial 25‰ sample value, measured as 20.09‰ at the inlet, was reduced to 1.99‰ at the outlet, after treating with Rhizophora mucronata. This was within the range for brackish water, and the calculations using the final salinity values showed a Cl-content of 1129.47 mg/L, while the best conductivity value was 3,485 mS/cm. In addition, the highest selective media CFU was Log 5.6, observed in the Avicennia marina 25‰ reactor, to which Vibrio alginolyticus was added. The supporting parameters of temperature and pH measured 30°C and a range of 6–8, respectively. Therefore, the removal of salt from brackish water using the mangrove operation is assumed to continuously produce low salinity levels.
Słowa kluczowe
Rocznik
Strony
212--223
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
  • Department of Environmental Engineering, Faculty of Civil, Planning and Geo Engineering, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, 60111 Surabaya, Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Planning and Geo Engineering, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, 60111 Surabaya, Indonesia
Bibliografia
  • 1. Yusuf, E., Rachmanto, T.A. dan Laksmono, R., 2009, Pengolahan Air Payau Menjadi Air Bersih dengan Menggunakan Membran Reverse Osmosis, Jurnal Ilmiah Teknik Lingkungan, 1, (1), 6–15.
  • 2. Dewantara, I.G.Y., Suyitno, B.M. and Lesmana, I. G.E., 2018, Desalinasi Air Laut Berbasis Energi Surya Sebagai Alternatif Penyediaan Air Bersih, Jurnal Teknik Mesin (JTM), 7, (1), 1–4,
  • 3. Taheri, R., Razmjoua, A., Szekelyb, G., Houc, J. and Ghezelbash, R., 2016, Biodesalination –On harnessing the potential of Nature’s desalination processes, 11, (4), 1–19.
  • 4. Parida, A.K. dan Jha, B., 2010, Salt tolerance mechanisms in mangroves: a review, Trees, 24, 199–217.
  • 5. Flowers, T.F. and Colmer, T.D., 2015, Plant salt tolerance: adaptations in halophytes, Annals of Botany, 115, 327–331.
  • 6. Chimayati, R.L. and Titah, H.S., 2019, Removal of Salinity using Interaction Mangrove Plants and Bacteria in Batch Reed Bed System Reactor, Journal of Ecological Engineering, 20, (4), 84–93.
  • 7. Saeni, M.S. and Tanasale, M., 1999, Desalinasi Air Laut dengan Tanaman Mangrove, Universitas Pattimura, Ambon.
  • 8. Purwanti, I.F. Anjasmara, I.R. and Suharmadi, 2006, Pemodelan Salinitas Air Tanah di Surabaya Timur, Prosiding Seminar Nasional Managemen Teknologi III, Jurusan Teknik Lingkungan-FTSLK, Institut Teknologi Sepuluh Nopember, Surabaya.
  • 9. Kim, K., Seo, E., Chang, S.K. Jung, T. Park dan Sang, J.L., 2016, Novel water filtration of saline water in the outermost layer of mangrove roots, 1–9.
  • 10. Salisbury, F.B. and Ross, C.W., 1995, Fisiologi Tumbuhan, Jilid 1, ITB, Bandung.
  • 11. Suprihatin, H., 2014, Penurunan Konsentrasi BOD Limbah Domestik Menggunakan Sistem Wetland dengan tumbuhan Hias Bintang Air (Cyperus alternifolius), Dinamika Lingkungan Indonesia, 1, Issue. 2, 80–87.
  • 12. Titah, H.S., Purwanti, I.F., Pratikno, H. Chimayati, R.L. and Handayanu, 2019(a), Preliminary Phytotoxicity Test on Salinity Against Mangrove Plants of Rhizophora mucronata, Journal of Ecological Engineering, 20, 3126–134.
  • 13. Pradipta, N., 2016, Studi Kandungan Nitrogen (N) dan Posfor (P) Pada Sedimen Mangrove di Wilayah Ekowisata Wonorejo Surabaya dan Pesisir Jenu Kabupaten Tuban, Skripsi, Universitas Airlangga.
  • 14. Arisandi, A., Wardani, M.K., Badami, K. dan Araninda, G.D., 2017, Dampak Perbedaan Salinitas Terhadap Viabilitas Bakteri Vibrio fluvialis, Jurnal Perikanan dan Kelautan, 9, (2),
  • 15. Adel, M., 2001, Bacterial Decomposition of Avicennia marina Leaf Litter, Journal of Biological Science, 8, 717–719.
  • 16. Tan, K.M., 1991, Dasar-dasar Kimia Tanah, UGM Press, Yogyakarta.
  • 17. Sunyoto, Danang, D.S. and Suwahyo, 2016, Pengolahan Sampah Organik Menggunakan Reaktor Biogas di Kabupaten Kendal, Jurnal Rekayasa, 14(1), 29–36.
  • 18. Harley, J.P. and Prescott, L.M., 2002, Laboratory Exercises in Microbiology Fifth Edition, McGraw-Hill Companies, Texas.
  • 19. Riyanto, A., 2009, Pengolahan dan Analisis Data Kesehatan, Jazamedia, Yogyakarta.
  • 20. Wang, Y.P. dan Smith, R., 1994, Design of Distributed Effluent Treatmnet System, Chemical Engineering Science, 49, 18, 3127–3145.
  • 21. Feller, I.C, Chamberlain, A.H., Piou, C, Chapman, S., and Lovelock, C.E., 2013, Latitudinal patterns of herbivory in mangrove forests: Consequences of nutrient enrichment, Ecosystems, 16, 1203–1215.
  • 22. Scholander, P.F., 1968, How mangroves desaline seawater. Physiol. Plant., 21, 251–261.
  • 23. Masduqi, A. and Assomadi, A.F, 2012, Operasi dan Proses Pengolahan Air, ITS Press, Surabaya.
  • 24. Sutcliffe, J. dan Baker, D., 1975, Plant and Mineral Salt, Oxford and IBH Publishing, London.
  • 25. Wong, Y.S., 1997, Mangrove Wetland As Wastewater Threatment Facility: A Field Trip, Hidrobiologia, 352, 49–59.
  • 26. Noor, M., 2007, Rawa Lebak-Ekologi Pemanfaatan, dan Pengembangan, Raja Grafindo Persada, Jakarta.
  • 27. Apriani, R.S. and Wesen, P., 2010, Penurunan Salinitas air Payau dengan Menggunakan Resin Penukar Ion, Envirotek: Jurnal Ilmiah Teknik Lingkungan. 2, 1, 64–77.
  • 28. Kusumastuti, W., 2009, Evaluasi Lahan Basah Buatan Vegetasi Mangrove Dalam Mengurangi Pencemaran Lingkungan. Studi Kasus di Desa Kepetingan Kabupaten Sidoarjo, Tesis Ilmu Lingkungan Universitas Diponegoro, Semarang.
  • 29. Widayati, K., 2009, Evaluasi Lahan Basah Bervegetasi Mangrove dalam Mengurangi Pencemaran Lingkunga (Studi Kasus di Desa Kepetingan Kabupaten Sidoarjo, Thesis Ilmu Lingkungan Universitas Diponegoro, Semarang.
  • 30. Prajitno, A., 2007, The Sensitivity Test of Flavonoid, of Eucheuma cottoni With Different Concentration as Vibrio harveyi, In. Jurnal Protein, 15(2), 66–71.
  • 31. Farid, A.F and Larsen, J.L, 1981, Growth of Vibrio alginolyticus: Interacting effects on pH, temperature, salt concentration, and incubation time. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene: I. Abt. Originale C: Allgemeine, angewandte und ökologische Mikrobiologie, 2(1), 68–75.
  • 32. Fardiaz, S., 1992, Polusi Air Dan Udara. PT.Kanisius. Yogjakarta.
  • 33. Titah, H.S., Purwanti, I.F., Pratikno, H., Chimayati, R.L. and Handayanu, 2019(b), Removal of Chemical Oxygen Demand in Brackish Water by Rhizophora mucronata using Reed Bed System Batch Reactor, E3S Web of Conferences 125.
  • 34. Sumarsih, S., 2003, Mikrobiologi Dasar, Jurusan Ilmu Tanah Fakultas Pertanian Upn Veteran, Yogyakarta.
  • 35. Tangahu, B.V. dan Warmadewanthi, I.D.A.A., 2001, Pengolahan Limbah Rumah Tangga dengan Memanfaatkan Tanaman Cattail (Typha angustifolia) dalam Sistem Constructed Wetland. Purifikasi, 2(3).
  • 36. Chatterjee. P., Bagchi, S. and Sengupta, N., 2014, The non-uniform early structural response of globular proteins to cold denaturing conditions: a case study with Yfh1, The Journal of Chemical Physics, 141, 20, 1–13.
  • 37. Buntoro, B.H., Rogomulyo, R. and Trisnowati, S., 2014, Pengaruh Takaran Pupuk Kandang dan Intensitas Cahaya Terhadap Pertumbuhan dan Hasil Temu Putih (Curcuma zedoaria L.), Vegetalika, 3, 4, pages. 29–39.
  • 38. Gardner, F.P., Pearce, R.B. and Mitchell, R.L., 1991, Physiology of Crop Plants (Fisiologi tumbuhan Budidaya, alih bahasa Herawati Susilo). UI Press. Jakarta
  • 39. Nurdin, Maspeke, P., Ilahude, Z., Zakaria, F., 2008, Pertumbuhan dan Hasil Jagung yang Dipupuk N, P dan K pada Tanah Vertisol Isimu Utara Kabupaten Gorontalo, J Tanah Trop, 14, 1, 4956.
  • 40. Dwidjoseputro, D., 1994, Pengantar Fisiologi Tumbuhan, PT. Gramedia, Jakarta.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61853336-3843-45b7-a546-d05c80022ba3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.