PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comparative study on interactions of ionic collectors with orthoclase

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flotation and adsorption characteristics of the most commonly used cationic and anionic collectors with high grade orthoclase were investigated through the electrokinetic potential measurement, microflotation, Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) studies. According to the obtained results, orthoclase had high flotation recovery with amine and oleic acid based (OAB) collector at certain pH ranges no flotation response was observed with petroleum sulfonate at different pHs. In contrast to the flotation recovery differences, the electrokinetic potential measurements, FTIR and AFM analyses presented similar adsorption characteristics for all collectors. The results of electrokinetic potential tests showed that amine had a strong influence on the zeta potential of orthoclase. While amine turned the zeta potentials of orthoclase from negative to positive, sulfonate and OAB collector provided slightly more negative zeta potentials at certain pHs. In the case of FTIR and AFM analyses, each collector-treated orthoclase (CTO) sample displayed similar characteristic FTIR bands of CH2 group and micro topographical collector coated patches with different intensities. However, the interactions of each collector with orthoclase surfaces were altered by rinsing with acetone indicating that the interactions were mostly through the electrostatic forces and/or hydrogen bonding.
Rocznik
Strony
955--972
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Department of Mining Engineering, Suleyman Demirel University, Isparta, 32260, Turkey
autor
  • Department of Mining Engineering, Middle East Technical University, Ankara, 06531, Turkey
Bibliografia
  • ANANTHAPADMANABHAN K.P., SOMASUNDARAN P., HEALY T.W., 1979, Chemistry of oleate and amine solutions in relation to flotation, Trans. Am. Inst. Min. Metall Pet. Eng. 266, 2003-2009.
  • ANDERSEN J.B., EL-MOFTY S.E., SOMASUNDARAN P., 1991, Using electrophoresis for determining the mechanism of amine, sulfate and oleate adsorption on calcite, Colloids Surf., 55, pp. 365-368.
  • BAYRAKTAR, I., ERSAYIN S., GULSOY O.Y., 1997, Upgrading titanium bearing na-feldspar by flotation using sulphonates, succinamates and soaps of vegetable oils, Miner. Eng., 1 (12), 1363–1374.
  • BINNIG G., QUATE C.F., GERBER CH., 1986, Atomic force microscope, Phys. Rev. Lett., 56, 930-933.
  • CELIK M.S., PEHLIVANOGLU B., ASLANBAS A., ASMATULU R., 2001, Flotation of colored impurities from feldspar ores, Miner. Metall. Proces., 18 (2), 101–105.
  • CHENNAKESAVULU K., RAJU G.B., PRABHAKAR S., NAIR C.M., MURTHY K.V.G.K., 2009, Adsorption of oleate on fuorite surface as revealed by atomic force microscopy, Int. J. Mineral Process., 90, 101–104.
  • CHURCHILL H., TENG H., HAZEN R.M., 2004, Correlation of pH-dependent surface interaction forces to amino acid adsorption: implications for the origin of life, Am. Mineral., 89, 1048–1055.
  • FUERSTENAU D.W., RAGHAVAN S., 1980, The crystal chemistry, surface properties and flotation behaviour of silicate minerals, In Proc. XII International Mineral Processing Congress, D.N.P.M., Sao Paulo Vol. II, 368.
  • GIESEKKE E.W., 1983, A review of spectroscopic techniques applied to the study of interactions between minerals and reagents in flotation systems, Int. J. Mineral Process., 11 (1), 19-56.
  • HACIFAZLIOGLU H., KURSUN I., TERZI M., 2012, Beneficiation of low-grade feldspar ore using cyclojet flotation cell, conventional cell and magnetic separator, Physicochem. Probl. Miner. Process., 48 (2), 381−392
  • HENDRIK A.C., LEANNE G.B., GAYLE E.M., 2003, Sodium stearate adsorption onto titania pigment, J. Colloid Interf. Sci., 268, 293–300.
  • HOCHELLA M.F. JR, EGGLESTON M.E., ELINGS B.E., THOMPSON M.S., 1990, Atomic structure and morphology of the albite {010} surface: an atomic-force microscope and electron diffraction study, Am. Mineral., 75, 723-730.
  • HORCAS I., FERNANDEZ R., GOMEZ-RODRIGUEZ J.M., COLCHERO J., GOMEZ-HERRERO J., BARO A.M., 2007, WSXM: A software for scanning probe microscopy and a tool for nanotechnology, Rev. Sci. Instrum., 78, 013705.
  • ICDD, 1986, Mineral Powder Diffraction File Databook, Set 1-42. Published by the International Center for Diffraction Data.
  • KUMAR V., RAJU G.B., 2002, Adsorption of oleic acid at sillimanite/water interface, J. Colloid Interf. Sci., 247, 275-281.
  • KUZNETSOV YU. I., ANDREEVA N.P., SOKOLOVA N.P., BULGAKOVA R.A., 2003, Joint adsorption of oleic and phenylanthranilic acids at passive iron, Prot. Met., 39 (5), 462–467.
  • LABIDI N.S., IDDOU A., 2007, Adsorption of oleic acid on quartz/water interface, J. Saudi Chem. Soc,, 1 (2), 221-234.
  • LASKOWSKI J.S., 1989, The colloid chemistry and flotation properties of primary amines, In Challenges in Mineral Processing, (K.V.S. Sastry and M.C. Fuerstenau, Eds.), SME, Littleton, CO, 15.
  • MARABINI A.M., CONTINI G., COZZA C., 1993, Surface spectroscopic techniques applied to the study of mineral processing, Int. J. Mineral Process., 38, 1-20.
  • MOON K.S., FUERSTENAU D.W., 2003, Surface crystal chemistry in selective flotation of spodumene [LiAl(SiO3)2] from other aluminosilicates, Int. J. Mineral Process., 72, 11–24.
  • NOVICH B.E., RING T.A., 1985, A predictive model for the alkylamine-quartz flotation system, Langmuir 1, 701-708.
  • O'DWYER, C., NAVAS, D., LAVAYEN, V., BENAVENTE, ., SANTA ANA, M.A., GONZÁLEZ, G., NEWCOMB, S.B., SOTOMAYOR TORRES, C.M., 2006, Nano-Urchin: The Formation and Structure of High-Density Spherical Clusters of Vanadium Oxide Nanotubes, Chem. Mater., 18 (13), pp. 3016–3022.
  • ORHAN E.C., BAYRAKTAR I., 2005, Amine–oleate interactions in feldspar flotation, Miner. Eng., 19, 48–55.
  • OZUN S., ATALAY U., KADIOGLU, Y.K., 2009, Investigation on possibility of opaque minerals removal from foid bearing rock, Mining and Geoengineering, Release of Journals AGH, 33 (4), 269-276.
  • PAIVA P.R.P., MONTE M.B.M., SIMAO R.A., GASPAR J.C., 2011, In situ afm study of potassium oleate adsorption and calcium precipitate formation on an apatite surface, Miner. Eng., 24, 387–395.
  • PARFITT G.D., ROCHESTER C.H., 1983, In adsorption from solution at the solid/liquid interface (Parfitt, G.D., Rochester, C.H., Eds.), Academic Press, New York, 3.
  • PARIA S., KHILAR K.C., 2004, A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface, Adv. Colloid Interface Sci., 110, 75–95.
  • POLKIN S.I., NAJFONOW T.V., 1964, Concerning the mechanism of collector and regulator interaction in the flotation of silicate and oxide minerals, Proceedings of the VII International Mineral Processing Congress (N.Arbiter. Ed.. Gordon and Breach Sci.), Vol.1, 507-518.
  • SIRACUSA P.A., SOMASUNDARAN P., 1987, The role of mineral dissolution in the adsorption of dodecylbenzenesulfonate on kaolinite and alumina, Colloids Surf., 26, 55-77.
  • SMITH R.W., SCOTT J.L., 1990, Mechanisms of dodecylamine flotation of quartz, Miner. Process. Extr. Metall. Rev., 7, 81-94.
  • SOMASUNDARAN P., MARKOVIC B., YU X. KRISHNAKUMAR S., 2003, Colloid systems and interfaces-stability of dispersion through polymer and surfactant adsorption, factors affecting adsorption, In Handbook of Surface and Colloid Chemistry (Birdi, K.S., Eds.), Second Edition, CRC Press, 387-434.
  • SOMASUNDARAN P., WANG D., 2006, Solution equilibria of surfactants, In Solution Chemistry: Minerals and Reagents, Developments in Mineral Processing 17, Elsevier Science, Amsterdam, Nederland, 5-44.
  • SUAREZ D.L., GOLDBERG S., SU C., 1998, Evaluation of oxyanion adsorption mechanisms on oxides using ftir spectroscopy and electrophoretic mobility, In Mineral–Water Interfacial Reactions Kinetics and Mechanisms, (eds. D.L. Sparks and T.J. Grundl), ACS Symposium Series 715, 136–178.
  • THOMAS W., 2010, Mining Chemicals, Handbook, Cytec Industries Inc., USA.
  • VIDYADHAR A., RAO H.K., 2007, Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system, J. Colloid Interf. Sci., 306, 195–204.
  • VIDYADHAR A., RAO K.H., FORSSBERG K.S.E., 2002, Adsorption of n-tallow 1,3-propanediamine–dioleate collector on albite and quartz minerals, and selective flotation of albite from greek stefania feldspar ore, J. Colloid Interf. Sci., 248, 19–29.
  • WANG Z., YI X., LI G., GUAN D., LOU A., 2001, A functional theoretical approach to the electrical double layer of a spherical colloid particle, Chem. Phys., 274, 57-69.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6180278f-8efb-42b2-a1f3-3b4ac788757e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.