PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elastic lateral-torsional buckling of steel bisymmetric double-tee section beams

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Sprężyste zwichrzenie belek stalowych o bisymetrycznym przekroju dwuteowym
Języki publikacji
EN
Abstrakty
EN
Elastic lateral-torsional buckling of double-tee section structural steelworks has been widely investigated with regard to the major axis bending of single structural elements as a result of certain loading conditions. No specific attention has been paid to the general formulation in which an arbitrary span load pattern was associated with unequal end moments as a result of the moment distribution between structural members of the load bearing system. A number of analytical solutions were developed on the basis of the Vlasov theory of thin-walled members. Since the accurate closed-form solutions of lateral-torsional buckling (LTB) of beams may only be obtained for simple loading and boundary conditions, more complex situations are treated nowadays by using numerical finite element methods (FEM). Analytical and numerical methods are frequently combined for the purpose of: a) verification of approximate analytical formulae or b) presentation the results in the form of multiple curve nomograms to be used in design practice. Investigations presented in this paper deal with the energy method applied to LTB of any complex loading condition of elements of simple end boundary conditions, bent about the major axis. Firstly, a brief summary of the second-order based energy equation dealt with in this paper is presented and followed by its approximate solution using the so-called refined energy method that in the case of LTB coincides with the Timoshenko’s energy refinement. As a result, the LTB energy equation shape functions of twist rotation and minor axis displacement are chosen such that they cover both the symmetric and antisymmetric lateral-torsional buckling modes. The latter modes are chosen in relation to two lowest LTB eigenmodes of beams under uniform major axis bending. Finally, the explicit form of the general solution is presented as being dependent upon the dimensionless bending moment equations for symmetric and antisymmetric components, and the in-span loads. Solutions based on the present investigations are compared for selected loading conditions with those obtained in the previous studies and verified with use of the LTBeam software. Conclusions are drawn with regard to the application of obtained closed-form solutions in engineering practice.
PL
Dotychczasowe badania w zakresie rozpatrywania sprężystej utraty stateczności giętno-skrętnej jako liniowego zadania wartości własnych sformułowano podstawy teoretyczne umożliwiające podjęcie studiów w zakresie nieliniowego problemu wartości własnych (NEA). W artykule przedstawiono zagadnienia sprężystego zwichrzenia stalowych belek o przekrojach dwuteowych bisymetrycznych, zginanych względem osi większej bezwładności przekroju. Badania przedstawione w pracy dotyczą analitycznej metody energetycznej odniesionej do dowolnego złożonego przypadku obciążenia, który traktuje się jako superpozycję symetrycznej i antysymetrycznej części obciążenia. Wyprowadzono nieklasyczne równanie energetyczne, które uwzględnia wpływ przemieszczeń w stanie przedkrytycznym na moment krytyczny.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland (absolwent)
Bibliografia
  • [1] R. Bijak, “Lateral-torsional Buckling Moment of Simply Supported Unrestrained Monosymmetric Beams”, IOP Conference Series: Materials Science and Engineering, 2019, vol. 471, pp. 1-8, DOI: 10.1088/1757-899X/471/3/032074.
  • [2] R. Bijak, “Lateral-Torsional Buckling of Simply Supported Bisymmetric Beam-Columns”, Journal of Civil Engineering, Environment and Architecture, 2017, vol. 64(3I), pp. 461-470 (in Polish), DOI: 10.7862/rb.2017.138.
  • [3] R. Bijak, “The Lateral Buckling of Simply Supported Unrestrained Bisymetric I-Shape Beams”, Archives of Civil Engineering, 2015, vol. 61, no. 4, pp. 127-140, DOI: 10.1515/ace-2015-0040.
  • [4] M.A. Bradford, P.E. Cuk, M.A. Gizejowski, N.S. Trahair, “Inelastic lateral-buckling of beam-columns”, Journal of Structural Engineering, 1987, vol. 113, no. 11, pp. 2259-2277.
  • [5] P.E. Cuk, N.S. Trahair, “Elastic buckling of beam-columns with unequal end moments”, Civil Engineering Transactions, Institution of Engineers, Australia, 1981, vol. 3, pp. 166-171.
  • [6] EN 1993-1-1:2005 Eurocode 3: Design of Steel Structures, Part 1-1: General rules and rules for buildings. CEN, Brussels, 2005.
  • [7] Y. Galéa, “Déversement élastique d’une poutre à section bi-symétrique soumise à des moments d’extrémité et une charge répartie ou concentrée”, Revue Construction Métallique, 2002, vol. 2, pp. 59-83 (in French).
  • [8] M.A. Giżejowski, A.M. Barszcz, Z. Stachura, “Elastic flexural-torsional buckling of steel I-section members unrestrained between end supports”, Archives of Civil Engineering, 2021, vol. 67, no. 1, 2021, pp. 635-656, DOI: 10.24425/ace.2021.136494.
  • [9] M.A. Giżejowski, Z. Stachura, J. Uziak, “Elastic flexural-torsional buckling of beams and beam-columns as a basis for stability design of members with discrete rigid restraints”, in Insights and Innovations in Structural Engineering, Mechanics and Computation, A. Zingoni, Ed. London; Taylor & Francis Group, 2016, pp. 738-744 (e-book on CD).
  • [10] M.A. Giżejowski, J. Uziak, “On elastic buckling of bisymmetric H-section steel elements under bending and compression”, in Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications, A. Zingoni, Ed. London: Taylor & Francis Group, 2019, pp. 1160-1167 (e-book on CD).
  • [11] LTBeam. Lateral Torsional Buckling of Beams by Ivan Galéa, CTICM, 2002, https://ltbeam.software.informer.com.
  • [12] F. Mohri, Ch. Bouzerira, M. Potier-Ferry, “Lateral buckling of thin-walled beam-column elements under combined axial and bending loads”, Thin-Walled Structures, 2008, vol. 46, no. 3, pp. 290-302, DOI: 10.1016/j.tws.2007.07.017.
  • [13] F. Mohri, A. Brouki, J.C. Roth, “Theoretical and numerical stability analyses of unrestrained, monosymmetric thin-walled beams”, Journal of Contructional Steel Research, 2003, vol. 59, pp. 63-90, DOI: 10.1016/S0143-974X(02)00007-X.
  • [14] F. Mohri, N. Damil, M. Potier-Ferry, “Buckling and lateral buckling interaction in thin-walled beam-column elements with mono-symmetric cross sections”, Applied Mathematical Modelling, 2013, vol. 37, pp. 3526-3540, DOI: 10.1016/j.apm.2012.07.053.
  • [15] F. Mohri, M. Potier-Ferry, “Effects of load height application and prebuckling deflections on lateral buckling of thin-walled beams”, Steel Composite Structures, 2006, vol. 6, no. 5, pp. 401-415, DOI: 10.12989/scs.2006.6.5.401.
  • [16] SN003a-EN-EU NCCI: Elastic critical moment for lateral torsional buckling. https://eurocodes.jrc.ec.europa.eu/doc/WS2008/SN003a-EN-EU.pdf.
  • [17] M. Pękacka, A. Barszcz, M. Giżejowski, “Calculation of the critical moment of steel beams of bisymmetric I-sections under combined loading”, Inżynieria i Budownictwo, 2021, vol. 1-2, pp. 74-79 (in Polish).
  • [18] Y.L. Pi, M.A. Bradford, “Effects of approximations in analyses of beams of open thin-walled cross-section- part I: Flexural-torsional stability”, International Journal for Numerical Methods in Engineering, 2001, vol. 51, no. 7, pp. 757-772, DOI: 10.1002/nme.155.
  • [19] Y.L. Pi, M.A. Bradford, “Effects of approximations in analyses of beams of open thin-walled cross-section-part II: 3-D nonlinear behaviour”, International Journal for Numerical Methods in Engineering, 2001, vol. 51, no. 7, pp. 773-790, DOI: 10.1002/nme.156
  • [20] Y.L. Pi, N.S. Trahair, “Nonlinear inelastic analysis of steel beam-columns”, Journal of Structural Engineering, 1994, vol. 120, no. 7, Part I: Theory, pp. 2041-2061, Part II: Applications, pp. 2062-2085.
  • [21] Y.L. Pi, N.S. Trahair, “Prebuckling deflections and lateral buckling”, Journal of Structural Engineering, 1992, vol. 118, no. 11, Part I: Theory, pp. 2949-2966, Part II: Applications, pp. 2967-2985.
  • [22] Y.L. Pi, N.S. Trahair, S. Rajasekaran, “Energy Equation For Beam Lateral Buckling”, Journal of Structural Engineering, 1992, vol. 118, pp. 1462-1479.
  • [23] K. Roik, Vorlesungen Uber Stahlbau. Grundlagen. Berlin-Munchen-Dusseldorf: Verlag von Wilhelm Ernst & Sohn, 1978 [in German].
  • [24] S.P. Timoshenko, J.M. Gere, Theory of Elastic Stability, 2nd ed. New York: McGraw-Hill, 1991.
  • [25] N.S. Trahair, “Flexural-torsional buckling of structures”. Boca Raton: CRC Press, 1993.
  • [26] N.S. Trahair, M.A. Bradford, D.A. Nethercot, L. Gardner, The behaviour and design of steel structures to EC3, 2nd ed. London-New York: Taylor and Francis, 2008.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-617c41ab-e5d7-44bd-b085-25b92ad16afb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.