Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:443/baztech/element/bwmeta1.element.baztech-6178abd2-b463-4ff6-9d52-f8439e661945

Czasopismo

Biocybernetics and Biomedical Engineering

Tytuł artykułu

Effects of various typical electrodes and electrode gels combinations on MRI signal-to-noise ratio and safety issues in EEG-fMRI recording

Autorzy Gao, D.  Li, M.  Li, J.  Liu, Z.  Yao, D.  Li, G.  Liu, T. 
Treść / Zawartość http://www.ibib.waw.pl/pl/wydawnictwa/biocybernetics-and-biomedical-enginering-bbe/bbe-tomy http://www.journals.elsevier.com/biocybernetics-and-biomedical-engineering/
Warianty tytułu
Języki publikacji EN
Abstrakty
EN To compare the effects of typical Ag/AgCl electrodes and electrode gels on MR images and assess safety hazards for patients during the electroencephalogram (EEG) data simultaneously with functional MRI (fMRI) recordings. So the measurements were conducted to compare the effects of three electrodes, three electrode gels and their combinations on the signal-to-noise ratio (SNR) of MR images at 3 T. Local temperature variation of the phantom for all conditions was also measured in the scanner. Results show that combination of silver-plated copper electrode and electrode gel (composed of carbomer as its main ingredient, with 85% moisture) is best for EEG-fMRI experiments. A sintered Ag/AgCl electrode could also be used as the material of EEG cap if infra-slow EEG-events need to be acquired in EEG-fMRI recording. Additionally, there is no significant heat induction detected. Overall, the methods and results of this study can be used for selecting appropriate EEG electrodes and electrode gels in EEG-fMRI experiments.
Słowa kluczowe
PL EEG-fMRI   SNR   zagrożenie bezpieczeństwa   elektroda   elektroda żelowa  
EN EEG-fMRI   SNR   safety hazard   electrode   electrode gel  
Wydawca Nałęcz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences
Elsevier
Czasopismo Biocybernetics and Biomedical Engineering
Rocznik 2016
Tom Vol. 36, no. 1
Strony 9--18
Opis fizyczny Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor Gao, D.
  • School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
autor Li, M.
  • College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, China
autor Li, J.
  • School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
autor Liu, Z.
  • School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
autor Yao, D.
  • School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Center for Information in BioMedicine, University of Electronic Science and Technology of China, China
autor Li, G.
  • College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, China
autor Liu, T.
  • School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China; Center for Information in BioMedicine, University of Electronic Science and Technology of China, China, liutiejun@uestc.edu.cn
Bibliografia
[1] Ritter P, Villringer A. Simultaneous EEG-fMRI. Neurosci Biobehav Rev 2006;30:823–38.
[2] Salek-Haddadi A, Friston KJ, Lemieux L, Fish DR. Studying spontaneous EEG activity with fMRI. Brain Res Rev 2003;43:110–33.
[3] Allen PJ, Josephs O, Turner R. A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 2000;12(2):230–9.
[4] Bai X, He B. On the estimation of the number of dipole sources in EEG source localization. Clin Neurophysiol 2005;116(9):2037–43.
[5] Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001;412:150–7.
[6] Buxton RB. Introduction to functional magnetic resonance imaging: principles and techniques. 2nd ed. New York: Cambridge University Press; 2002. p. 523.
[7] Smekal AV, Seelos KC, Kuper CR, Reiser M. Patient monitoring and safety during MRI examinations. Eur Radiol 1995;5:302–5.
[8] Huang-Hellinger FR, Breiter HC, McCormack G, Cohen MS, Kwong KK, Savoy RL, et al. Simultaneous functional magnetic resonance imaging and electrophysiological recording. Hum Brain Mapp 1995;3:13–23.
[9] Ives JR, Warach S, Patel MR, Schlaug G, Edelman RR, Schomer DL. Techniques for monitoring the EEG and triggering functional magnetic resonance imaging scans time-locked to the patient's focal or generalized epileptic discharges. Epilepsia 1995;36:S95.
[10] Lemieux L, Allen PJ, Franconi F, Symms MR, Fish DR. Recording of EEG during fMRI experiments: patient safety. Magn Reson Med 1997;38(6):943–52.
[11] Janssen FE, Van Leeuwen GM, Van Steenhoven AA. Modelling of temperature and perfusion during scalp cooling. Phys Med Biol 2005;50:4065–73.
[12] Stevens TK, Ives JR, Klessen LM, Bartha R. MR compatibility of EEG scalp electrodes at 4 Tesla. J Magn Reson Imaging 2007;25:872–7.
[13] Krakow K, Allen PJ, Symms MR, Lemieux1 L, Josephs O, Fish DR. EEG recording during fMRI experiments: image quality. Hum Brain Mapp 2000;10:10–5.
[14] Goyal AI. A comprehensive study of the effects of EEG electrode arrays on MRI signal-to-noise at 3T. The University of Texas at Arlington 2006;85:1445706.
[15] Muthuraman M, Galka A, Hong VN, Heute U, Deuschl G, Raethjen J. Cortico-muscular coherence on artifact corrected EEG-EMG data recorded with a MRI scanner. 35th Annual International Conference of the IEEE EMBS; 2013.
[16] Niazy RK, Beckmann CF, Iannetti GD, Brady JM, Smith SM. Removal of FMRI environmental artifacts from EEG data using optimal basis sets. Neuroimage 2005;28:720–37.
[17] Krishnaswamy P, Bonmassar G, Purdon PL, Brown EN. Reference-free harmonic regression technique to remove EEG-fMRI ballistocardiogram artifacts. 35th Annual International Conference of the IEEE EMBS; 2013.
[18] Purdon PL, Millan H, Fuller PL, Bonmassar G. An open-source hardware and software system for acquisition and real-time processing of electrophysiology during high field MRI. J Neurosci Methods 2008;175(2):165–86.
[19] Tallgren P, Vanhatalo S, Kaila K, Voipio J. Evaluation of commercially available electrodes and gels for recording of slow EEG potentials. Clin Neurophysiol 2005;116:799–806.
[20] Collins CM, Liu W, Schreiber W, Yang QX, Smith MB. Central brightening due to constructive interference with, without, and despite dielectric resonance. J Magn Reson Imaging 2005;21(2):192–6.
[21] Scarff CJ, Reynolds A, Goodyear BG, Ponton CW, Dort JC, Eggermont JJ. Simultaneous 3-T fMRI and high-density recording of human auditory evoked potentials. Neuroimage 2004;23(3):1129–42.
[22] Iannetti GD, Niazy RK, Wise RG, Jezzard P, Brooks JCW, Zambreanu L, et al. Simultaneous recording of laser-evoked brain potentials and continuous: high-field functional magnetic resonance imaging in humans. Neuroimage 2005;28(3):708–19.
[23] Väisänen O. Multichannel EEG methods to improve the spatial resolution of cortical potential distribution and the signal quality of deep brain sources. Tampere University of Technology; 2008, Permanent address: http://URN.fi/URN:NBN:fi:tty-200903041030.
Uwagi
PL Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-6178abd2-b463-4ff6-9d52-f8439e661945
Identyfikatory
DOI 10.1016/j.bbe.2015.11.007